Spaces:
Runtime error
Runtime error
import gradio as gr | |
import nltk | |
import string | |
from transformers import GPT2LMHeadModel, GPT2Tokenizer, GenerationConfig, set_seed | |
import random | |
nltk.download('punkt') | |
response_length = 5200 | |
sentence_detector = nltk.data.load('tokenizers/punkt/english.pickle') | |
tokenizer = GPT2Tokenizer.from_pretrained("gpt2-medium") | |
tokenizer.truncation_side = 'right' | |
# model = GPT2LMHeadModel.from_pretrained('checkpoint-50000') | |
model = GPT2LMHeadModel.from_pretrained('coffeeee/nsfw-story-generator2') | |
generation_config = GenerationConfig.from_pretrained('gpt2-medium') | |
generation_config.max_new_tokens = response_length | |
generation_config.pad_token_id = generation_config.eos_token_id | |
def generate_response(outputs, new_prompt): | |
story_so_far = "\n".join(outputs[:int(1024 / response_length + 1)]) if outputs else "" | |
set_seed(random.randint(0, 4000000000)) | |
inputs = tokenizer.encode(story_so_far + "\n" + new_prompt if story_so_far else new_prompt, | |
return_tensors='pt', truncation=True, | |
max_length=1024 - response_length) | |
output = model.generate(inputs, do_sample=True, generation_config=generation_config) | |
response = clean_paragraph(tokenizer.batch_decode(output)[0][(len(story_so_far) + 1 if story_so_far else 0):]) | |
outputs.append(response) | |
return { | |
user_outputs: outputs, | |
story: (story_so_far + "\n" if story_so_far else "") + response, | |
prompt: None | |
} | |
def undo(outputs): | |
outputs = outputs[:-1] if outputs else [] | |
return { | |
user_outputs: outputs, | |
story: "\n".join(outputs) if outputs else None | |
} | |
def clean_paragraph(entry): | |
paragraphs = entry.split('\n') | |
for i in range(len(paragraphs)): | |
split_sentences = nltk.tokenize.sent_tokenize(paragraphs[i], language='english') | |
if i == len(paragraphs) - 1 and split_sentences[:1][-1] not in string.punctuation: | |
paragraphs[i] = " ".join(split_sentences[:-1]) | |
return capitalize_first_char("\n".join(paragraphs)) | |
def reset(): | |
return { | |
user_outputs: [], | |
story: None | |
} | |
def capitalize_first_char(entry): | |
for i in range(len(entry)): | |
if entry[i].isalpha(): | |
return entry[:i] + entry[i].upper() + entry[i + 1:] | |
return entry | |
with gr.Blocks(theme=gr.themes.Default(text_size='lg', font=[gr.themes.GoogleFont("Bitter"), "Arial", "sans-serif"])) as demo: | |
placeholder_text = ''' | |
Disclaimer: everything this model generates is a work of fiction. | |
Content from this model WILL generate inappropriate and potentially offensive content. | |
Use at your own discretion. Please respect the Huggingface code of conduct.''' | |
story = gr.Textbox(label="Story", interactive=False, lines=20, placeholder=placeholder_text) | |
story.style(show_copy_button=True) | |
user_outputs = gr.State([]) | |
prompt = gr.Textbox(label="Prompt", placeholder="Start a new story, or continue your current one!", lines=3, max_lines=3) | |
with gr.Row(): | |
gen_button = gr.Button('Generate') | |
undo_button = gr.Button("Undo") | |
res_button = gr.Button("Reset") | |
prompt.submit(generate_response, [user_outputs, prompt], [user_outputs, story, prompt], scroll_to_output=True) | |
gen_button.click(generate_response, [user_outputs, prompt], [user_outputs, story, prompt], scroll_to_output=True) | |
undo_button.click(undo, user_outputs, [user_outputs, story], scroll_to_output=True) | |
res_button.click(reset, [], [user_outputs, story], scroll_to_output=True) | |
# for local server; comment out for deploy | |
demo.launch(inbrowser=True, server_name='0.0.0.0') | |