File size: 4,469 Bytes
35378f6
 
923aff9
 
35378f6
18d5ac3
 
923aff9
35378f6
 
18d5ac3
923aff9
 
18d5ac3
923aff9
 
 
 
18d5ac3
923aff9
 
 
 
 
 
 
 
 
 
 
 
 
 
b21c210
923aff9
b21c210
923aff9
 
 
 
 
 
b21c210
923aff9
 
 
 
 
b21c210
 
923aff9
b21c210
 
 
 
 
 
923aff9
b21c210
 
 
 
 
 
 
923aff9
b21c210
923aff9
 
35378f6
18d5ac3
35378f6
18d5ac3
923aff9
 
 
35378f6
923aff9
35378f6
 
923aff9
35378f6
 
18d5ac3
35378f6
923aff9
 
 
 
 
 
 
35378f6
 
923aff9
 
 
 
 
 
 
 
 
35378f6
 
18d5ac3
923aff9
18d5ac3
923aff9
 
35378f6
923aff9
 
 
 
18d5ac3
923aff9
35378f6
 
923aff9
 
 
 
 
b21c210
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import os
import pandas as pd
import requests
import json
from io import StringIO
from datetime import datetime

from src.assets.text_content import REPO

def get_github_data():
    """
    Read and process data from CSV files hosted on GitHub. - https://github.com/clembench/clembench-runs

    Returns:
        github_data (dict): Dictionary containing:
            - "text": List of DataFrames for each version's textual leaderboard data.
            - "multimodal": List of DataFrames for each version's multimodal leaderboard data.
            - "date": Formatted date of the latest version in "DD Month YYYY" format.
    """
    base_repo = REPO
    json_url = base_repo + "benchmark_runs.json"
    response = requests.get(json_url)

    # Check if the JSON file request was successful
    if response.status_code != 200:
        print(f"Failed to read JSON file: Status Code: {response.status_code}")
        return None, None, None, None

    json_data = response.json()
    versions = json_data['versions']

    version_names = sorted(
        [ver['version'] for ver in versions],
        key=lambda v: list(map(int, v[1:].split('_')[0].split('.'))),  # {{ edit_1 }}: Corrected slicing to handle 'v' prefix
        reverse=True
    )   

    # Get Last updated date of the latest version
    latest_version = version_names[0]
    latest_date = next(
        ver['date'] for ver in versions if ver['version'] == latest_version
    )
    formatted_date = datetime.strptime(latest_date, "%Y-%m-%d").strftime("%d %b %Y")  # {{ edit_1 }}: Updated date format

    # Get Leaderboard data - for text-only + multimodal
    github_data = {}

    mm_dfs = []
    mm_date = ""
    mm_flag = True
    for version in version_names:
        # Check if version ends with 'multimodal' before constructing the URL
        mm_suffix = "_multimodal" if not version.endswith('multimodal') else ""
        mm_url = f"{base_repo}{version}{mm_suffix}/results.csv"  # {{ edit_1 }}: Conditional suffix for multimodal
        mm_response = requests.get(mm_url)
        if mm_response.status_code == 200:
            df = pd.read_csv(StringIO(mm_response.text))
            df = process_df(df)
            df = df.sort_values(by=df.columns[1], ascending=False) # Sort by clemscore column
            mm_dfs.append(df)
            if mm_flag:
                mm_date = next(ver['date'] for ver in versions if ver['version'] == version)
                mm_date = datetime.strptime(mm_date, "%Y-%m-%d").strftime("%d %b %Y")
                mm_flag = False

    github_data["multimodal"] = mm_dfs
    github_data["date"] = mm_date

    return github_data


def process_df(df: pd.DataFrame) -> pd.DataFrame:
    """
    Process dataframe:
    - Convert datatypes to sort by "float" instead of "str"
    - Remove repetition in model names
    - Update column names

    Args:
        df: Unprocessed Dataframe (after using update_cols)

    Returns:
        df: Processed Dataframe
    """

    # Convert column values to float, apart from the model names column
    for col in df.columns[1:]:
        df[col] = pd.to_numeric(df[col], errors='coerce')

    # Remove repetition in model names
    df[df.columns[0]] = df[df.columns[0]].str.replace('-t0.0', '', regex=True)
    df[df.columns[0]] = df[df.columns[0]].apply(lambda x: '--'.join(set(x.split('--'))))

    # Update column names
    custom_column_names = ['Model', 'Clemscore', '% Played', 'Quality Score']
    for i, col in enumerate(df.columns[4:]):  # Start Capitalizing from the 5th column
        parts = col.split(',')
        custom_name = f"{parts[0].strip().capitalize()} {parts[1].strip()}"
        custom_column_names.append(custom_name)

    # Rename columns
    df.columns = custom_column_names

    return df


def query_search(df: pd.DataFrame, query: str) -> pd.DataFrame:
    """
    Filter the dataframe based on the search query.

    Args:
        df (pd.DataFrame): Unfiltered dataframe.
        query (str): A string of queries separated by ";".
    Returns:
        pd.DataFrame: Filtered dataframe containing searched queries in the 'Model' column.
    """
    if not query.strip():  # Reset Dataframe if empty query is passed
        return df

    queries = [q.strip().lower() for q in query.split(';') if q.strip()]  # Normalize and split queries

    # Filter dataframe based on queries in 'Model' column
    filtered_df = df[df['Model'].str.lower().str.contains('|'.join(queries))]

    return filtered_df