Spaces:
Runtime error
Runtime error
File size: 4,469 Bytes
35378f6 923aff9 35378f6 18d5ac3 923aff9 35378f6 18d5ac3 923aff9 18d5ac3 923aff9 18d5ac3 923aff9 b21c210 923aff9 b21c210 923aff9 b21c210 923aff9 b21c210 923aff9 b21c210 923aff9 b21c210 923aff9 b21c210 923aff9 35378f6 18d5ac3 35378f6 18d5ac3 923aff9 35378f6 923aff9 35378f6 923aff9 35378f6 18d5ac3 35378f6 923aff9 35378f6 923aff9 35378f6 18d5ac3 923aff9 18d5ac3 923aff9 35378f6 923aff9 18d5ac3 923aff9 35378f6 923aff9 b21c210 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
import os
import pandas as pd
import requests
import json
from io import StringIO
from datetime import datetime
from src.assets.text_content import REPO
def get_github_data():
"""
Read and process data from CSV files hosted on GitHub. - https://github.com/clembench/clembench-runs
Returns:
github_data (dict): Dictionary containing:
- "text": List of DataFrames for each version's textual leaderboard data.
- "multimodal": List of DataFrames for each version's multimodal leaderboard data.
- "date": Formatted date of the latest version in "DD Month YYYY" format.
"""
base_repo = REPO
json_url = base_repo + "benchmark_runs.json"
response = requests.get(json_url)
# Check if the JSON file request was successful
if response.status_code != 200:
print(f"Failed to read JSON file: Status Code: {response.status_code}")
return None, None, None, None
json_data = response.json()
versions = json_data['versions']
version_names = sorted(
[ver['version'] for ver in versions],
key=lambda v: list(map(int, v[1:].split('_')[0].split('.'))), # {{ edit_1 }}: Corrected slicing to handle 'v' prefix
reverse=True
)
# Get Last updated date of the latest version
latest_version = version_names[0]
latest_date = next(
ver['date'] for ver in versions if ver['version'] == latest_version
)
formatted_date = datetime.strptime(latest_date, "%Y-%m-%d").strftime("%d %b %Y") # {{ edit_1 }}: Updated date format
# Get Leaderboard data - for text-only + multimodal
github_data = {}
mm_dfs = []
mm_date = ""
mm_flag = True
for version in version_names:
# Check if version ends with 'multimodal' before constructing the URL
mm_suffix = "_multimodal" if not version.endswith('multimodal') else ""
mm_url = f"{base_repo}{version}{mm_suffix}/results.csv" # {{ edit_1 }}: Conditional suffix for multimodal
mm_response = requests.get(mm_url)
if mm_response.status_code == 200:
df = pd.read_csv(StringIO(mm_response.text))
df = process_df(df)
df = df.sort_values(by=df.columns[1], ascending=False) # Sort by clemscore column
mm_dfs.append(df)
if mm_flag:
mm_date = next(ver['date'] for ver in versions if ver['version'] == version)
mm_date = datetime.strptime(mm_date, "%Y-%m-%d").strftime("%d %b %Y")
mm_flag = False
github_data["multimodal"] = mm_dfs
github_data["date"] = mm_date
return github_data
def process_df(df: pd.DataFrame) -> pd.DataFrame:
"""
Process dataframe:
- Convert datatypes to sort by "float" instead of "str"
- Remove repetition in model names
- Update column names
Args:
df: Unprocessed Dataframe (after using update_cols)
Returns:
df: Processed Dataframe
"""
# Convert column values to float, apart from the model names column
for col in df.columns[1:]:
df[col] = pd.to_numeric(df[col], errors='coerce')
# Remove repetition in model names
df[df.columns[0]] = df[df.columns[0]].str.replace('-t0.0', '', regex=True)
df[df.columns[0]] = df[df.columns[0]].apply(lambda x: '--'.join(set(x.split('--'))))
# Update column names
custom_column_names = ['Model', 'Clemscore', '% Played', 'Quality Score']
for i, col in enumerate(df.columns[4:]): # Start Capitalizing from the 5th column
parts = col.split(',')
custom_name = f"{parts[0].strip().capitalize()} {parts[1].strip()}"
custom_column_names.append(custom_name)
# Rename columns
df.columns = custom_column_names
return df
def query_search(df: pd.DataFrame, query: str) -> pd.DataFrame:
"""
Filter the dataframe based on the search query.
Args:
df (pd.DataFrame): Unfiltered dataframe.
query (str): A string of queries separated by ";".
Returns:
pd.DataFrame: Filtered dataframe containing searched queries in the 'Model' column.
"""
if not query.strip(): # Reset Dataframe if empty query is passed
return df
queries = [q.strip().lower() for q in query.split(';') if q.strip()] # Normalize and split queries
# Filter dataframe based on queries in 'Model' column
filtered_df = df[df['Model'].str.lower().str.contains('|'.join(queries))]
return filtered_df |