cpnepo's picture
Update app.py
8b47bd2
raw
history blame
2.59 kB
import streamlit as st
from sentence_transformers import SentenceTransformer, util
from transformers import (AutoModelForQuestionAnswering,
AutoTokenizer, pipeline)
import pandas as pd
import regex as re
# Select model for question answering
model_name = "deepset/roberta-base-squad2"
# Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Create pipeline
pipe = pipeline('question-answering', model=model_name, tokenizer=model_name)
# Load Harry Potter book corpus from link
book1_raw_0 = open("book_1.txt", mode="r", encoding="utf-8").read()
# Text pre-processing
# Remove page statements
book1_raw_1 = re.sub(r'Page \| [0-9]+ Harry Potter [a-zA-Z \-]+J.K. Rowling', '', book1_raw_0)
# Remove newlines
book1_raw_1 = re.sub(r'\n', '', book1_raw_1)
# Remove periods; this will relevant in the regrouping later
book1_raw_1 = re.sub(r'Mr. ', 'Mr ', book1_raw_1)
book1_raw_1 = re.sub(r'Ms. ', 'Ms ', book1_raw_1)
book1_raw_1 = re.sub(r'Mrs. ', 'Mrs ', book1_raw_1)
# Group into 6 sentences-long parts
paragraphs = re.findall("[^.?!]+[.?!][^.?!]+[.?!][^.?!]+[.?!][^.?!]+[.?!][^.?!]+[.?!][^.?!]+[.?!]", book1_raw_1)
st.title('Harry Potter and the Extractive Question Answering Model')
# Type in HP-related query here
query = st.text_area("Hello my dears! What is your question? Be patient please, I am not a Ravenclaw!")
if st.button('Accio Responsa!'):
# Perform sentence embedding on query and sentence groups
model_embed_name = 'sentence-transformers/msmarco-distilbert-dot-v5'
model_embed = SentenceTransformer(model_embed_name)
doc_emb = model_embed.encode(paragraphs)
query_emb = model_embed.encode(query)
#Compute dot score between query and all document embeddings
scores = util.dot_score(query_emb, doc_emb)[0].cpu().tolist()
#Combine docs & scores
doc_score_pairs = list(zip(paragraphs, scores))
#Sort by decreasing score and get only 3 most similar groups
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1],
reverse=True)[:1]
# Join these similar groups to form the context
context = "".join(x[0] for x in doc_score_pairs)
# Perform the querying
QA_input = {'question': query, 'context': context}
res = pipe(QA_input)
confidence = res.get('score')
if confidence > 0.5:
st.write(res.get('answer'))
else:
out = "Sorry dear, I'm not sure"
st.write(out)
#out = res.get('answer')