Spaces:
Runtime error
Runtime error
import streamlit as st | |
from sentence_transformers import SentenceTransformer, util | |
from transformers import (AutoModelForQuestionAnswering, | |
AutoTokenizer, pipeline) | |
import pandas as pd | |
import regex as re | |
# Select model for question answering | |
model_name = "deepset/roberta-base-squad2" | |
# Load model & tokenizer | |
model = AutoModelForQuestionAnswering.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# Create pipeline | |
pipe = pipeline('question-answering', model=model_name, tokenizer=model_name) | |
# Load Harry Potter book corpus from link | |
book1_raw_0 = open("book_1.txt", mode="r", encoding="utf-8").read() | |
# Text pre-processing | |
# Remove page statements | |
book1_raw_1 = re.sub(r'Page \| [0-9]+ Harry Potter [a-zA-Z \-]+J.K. Rowling', '', book1_raw_0) | |
# Remove newlines | |
book1_raw_1 = re.sub(r'\n', '', book1_raw_1) | |
# Remove periods; this will relevant in the regrouping later | |
book1_raw_1 = re.sub(r'Mr. ', 'Mr ', book1_raw_1) | |
book1_raw_1 = re.sub(r'Ms. ', 'Ms ', book1_raw_1) | |
book1_raw_1 = re.sub(r'Mrs. ', 'Mrs ', book1_raw_1) | |
# Group into 6 sentences-long parts | |
paragraphs = re.findall("[^.?!]+[.?!][^.?!]+[.?!][^.?!]+[.?!][^.?!]+[.?!][^.?!]+[.?!][^.?!]+[.?!]", book1_raw_1) | |
st.title('Harry Potter and the Extractive Question Answering Model') | |
# Type in HP-related query here | |
query = st.text_area("Hello my dears! What is your question? Be patient please, I am not a Ravenclaw!") | |
if st.button('Accio Responsa!'): | |
# Perform sentence embedding on query and sentence groups | |
model_embed_name = 'sentence-transformers/msmarco-distilbert-dot-v5' | |
model_embed = SentenceTransformer(model_embed_name) | |
doc_emb = model_embed.encode(paragraphs) | |
query_emb = model_embed.encode(query) | |
#Compute dot score between query and all document embeddings | |
scores = util.dot_score(query_emb, doc_emb)[0].cpu().tolist() | |
#Combine docs & scores | |
doc_score_pairs = list(zip(paragraphs, scores)) | |
#Sort by decreasing score and get only 3 most similar groups | |
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], | |
reverse=True)[:1] | |
# Join these similar groups to form the context | |
context = "".join(x[0] for x in doc_score_pairs) | |
# Perform the querying | |
QA_input = {'question': query, 'context': context} | |
res = pipe(QA_input) | |
confidence = res.get('score') | |
if confidence > 0.5: | |
st.write(res.get('answer')) | |
else: | |
out = "Sorry dear, I'm not sure" | |
st.write(out) | |
#out = res.get('answer') | |