Spaces:
Running
Running
File size: 9,338 Bytes
d3378e2 a4100ac d3378e2 a4100ac d3378e2 a4100ac ae43eae a4100ac ae43eae a4100ac d3378e2 a4100ac d3378e2 a4100ac d3378e2 a4100ac d3378e2 a4100ac 18d2991 a4100ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
# Imports
import gradio as gr
import os
import matplotlib.pyplot as plt
import torch
import torchaudio
from torch import nn
import pytorch_lightning as pl
from ema_pytorch import EMA
import yaml
from audio_diffusion_pytorch import DiffusionModel, UNetV0, VDiffusion, VSampler
# Load configs
def load_configs(config_path):
with open(config_path, 'r') as file:
config = yaml.safe_load(file)
pl_configs = config['model']
model_configs = config['model']['model']
return pl_configs, model_configs
# plot mel spectrogram
def plot_mel_spectrogram(sample, sr):
transform = torchaudio.transforms.MelSpectrogram(
sample_rate=sr,
n_fft=1024,
hop_length=512,
n_mels=80,
center=True,
norm="slaney",
)
spectrogram = transform(torch.mean(sample, dim=0)) # downmix and cal spectrogram
spectrogram = torchaudio.functional.amplitude_to_DB(spectrogram, 1.0, 1e-10, 80.0)
# Plot the Mel spectrogram
fig = plt.figure(figsize=(7, 4))
plt.imshow(spectrogram, aspect='auto', origin='lower')
plt.colorbar(format='%+2.0f dB')
plt.xlabel('Frame')
plt.ylabel('Mel Bin')
plt.title('Mel Spectrogram')
plt.tight_layout()
return fig
# Define PyTorch Lightning model
class Model(pl.LightningModule):
def __init__(
self,
lr: float,
lr_beta1: float,
lr_beta2: float,
lr_eps: float,
lr_weight_decay: float,
ema_beta: float,
ema_power: float,
model: nn.Module,
):
super().__init__()
self.lr = lr
self.lr_beta1 = lr_beta1
self.lr_beta2 = lr_beta2
self.lr_eps = lr_eps
self.lr_weight_decay = lr_weight_decay
self.model = model
self.model_ema = EMA(self.model, beta=ema_beta, power=ema_power)
# Instantiate model (must match model that was trained)
def load_model(model_configs, pl_configs) -> nn.Module:
# Diffusion model
model = DiffusionModel(
net_t=UNetV0, # The model type used for diffusion (U-Net V0 in this case)
in_channels=model_configs['in_channels'], # U-Net: number of input/output (audio) channels
channels=model_configs['channels'], # U-Net: channels at each layer
factors=model_configs['factors'], # U-Net: downsampling and upsampling factors at each layer
items=model_configs['items'], # U-Net: number of repeating items at each layer
attentions=model_configs['attentions'], # U-Net: attention enabled/disabled at each layer
attention_heads=model_configs['attention_heads'], # U-Net: number of attention heads per attention item
attention_features=model_configs['attention_features'], # U-Net: number of attention features per attention item
diffusion_t=VDiffusion, # The diffusion method used
sampler_t=VSampler # The diffusion sampler used
)
# pl model
model = Model(
lr=pl_configs['lr'],
lr_beta1=pl_configs['lr_beta1'],
lr_beta2=pl_configs['lr_beta2'],
lr_eps=pl_configs['lr_eps'],
lr_weight_decay=pl_configs['lr_weight_decay'],
ema_beta=pl_configs['ema_beta'],
ema_power=pl_configs['ema_power'],
model=model
)
return model
# Assign to GPU
def assign_to_gpu(model):
if torch.cuda.is_available():
model = model.to('cuda')
print(f"Device: {model.device}")
return model
# Load model checkpoint
def load_checkpoint(model, ckpt_path) -> None:
checkpoint = torch.load(ckpt_path, map_location='cpu')['state_dict']
model.load_state_dict(checkpoint) # should output "<All keys matched successfully>"
# Generate Samples
def generate_samples(model_name, num_samples, num_steps, init_audio=None, noise_level=0.7, duration=32768):
# load_checkpoint
ckpt_path = models[model_name]
load_checkpoint(model, ckpt_path)
if num_samples > 1:
duration = int(duration / 2)
# Generate samples
with torch.no_grad():
if init_audio:
# load audio sample
audio_sample = torch.tensor(init_audio[1].T, dtype=torch.float32).unsqueeze(0).to(model.device)
audio_sample = audio_sample / torch.max(torch.abs(audio_sample)) # normalize init_audio
# Trim audio
og_shape = audio_sample.shape
if duration < og_shape[2]:
audio_sample = audio_sample[:,:,:duration]
elif duration > og_shape[2]:
# Pad tensor with zeros to match sample length
audio_sample = torch.concat((audio_sample, torch.zeros(og_shape[0], og_shape[1], duration - og_shape[2]).to(model.device)), dim=2)
else:
audio_sample = torch.zeros((1, 2, int(duration)), device=model.device)
noise_level = 1.0
all_samples = torch.zeros(2, 0)
for i in range(num_samples):
noise = torch.randn_like(audio_sample, device=model.device) * noise_level # [batch_size, in_channels, length]
audio = (audio_sample * abs(1-noise_level)) + noise # add noise
# generate samples
generated_sample = model.model_ema.ema_model.sample(audio, num_steps=num_steps).squeeze(0).cpu() # Suggested num_steps 10-100
# concatenate all samples:
all_samples = torch.concat((all_samples, generated_sample), dim=1)
torch.cuda.empty_cache()
fig = plot_mel_spectrogram(all_samples, sr)
plt.title(f"{model_name} Mel Spectrogram")
return (sr, all_samples.cpu().detach().numpy().T), fig # (sample rate, audio), plot
# Define Constants & initialize model
# load model & configs
sr = 44100 # sampling rate
config_path = "saved_models/config.yaml" # config path
pl_configs, model_configs = load_configs(config_path)
model = load_model(model_configs, pl_configs)
model = assign_to_gpu(model)
models = {
"Kicks": "saved_models/kicks/kicks_v7.ckpt",
"Snares": "saved_models/snares/snares_v0.ckpt",
"Hi-hats": "saved_models/hihats/hihats_v2.ckpt",
"Percussion": "saved_models/percussion/percussion_v0.ckpt"
}
intro = """
<h1 style="font-weight: 1400; text-align: center; margin-bottom: 6px;">
Tiny Audio Diffusion
</h1>
<h3 style="font-weight: 600; text-align: center;">
Christopher Landschoot - Audio waveform diffusion built to run on consumer-grade hardware (<2GB VRAM)
</h3>
<h4 style="text-align: center; margin-bottom: 6px;">
<a href="https://github.com/crlandsc/tiny-audio-diffusion" style="text-decoration: underline;" target="_blank">GitHub Repo</a>
| <a href="https://youtu.be/m6Eh2srtTro" style="text-decoration: underline;" target="_blank">Repo Tutorial Video</a>
| <a href="https://medium.com/towards-data-science/tiny-audio-diffusion-ddc19e90af9b" style="text-decoration: underline;" target="_blank">Towards Data Science Article</a>
</h4>
"""
with gr.Blocks() as demo:
# Layout
gr.HTML(intro)
with gr.Row(equal_height=False):
with gr.Column():
# Inputs
model_name = gr.Dropdown(choices=list(models.keys()), value=list(models.keys())[3], label="Model")
num_samples = gr.Slider(1, 25, step=1, label="Number of Samples to Generate", value=3)
num_steps = gr.Slider(1, 100, step=1, label="Number of Diffusion Steps", value=15)
# Conditioning Audio Input
with gr.Accordion("Input Audio (optional)", open=False):
init_audio_description = gr.HTML('Upload an audio file to perform conditional "style transfer" diffusion.<br>Leaving input audio blank results in unconditional generation.')
init_audio = gr.Audio(label="Input Audio Sample")
init_audio_noise = gr.Slider(0, 1, step=0.01, label="Noise to add to input audio", value=0.70)#, visible=True)
# Examples
gr.Examples(
examples=[
os.path.join(os.path.dirname(__file__), "samples", "guitar.wav"),
os.path.join(os.path.dirname(__file__), "samples", "snare.wav"),
os.path.join(os.path.dirname(__file__), "samples", "kick.wav"),
os.path.join(os.path.dirname(__file__), "samples", "hihat.wav")
],
inputs=init_audio,
label="Example Audio Inputs"
)
# Buttons
with gr.Row():
with gr.Column():
clear_button = gr.Button(value="Reset All")
with gr.Column():
generate_btn = gr.Button("Generate Samples!")
with gr.Column():
# Outputs
output_audio = gr.Audio(label="Generated Audio Sample")
output_plot = gr.Plot(label="Generated Audio Spectrogram")
# Functionality
# Generate samples
generate_btn.click(fn=generate_samples, inputs=[model_name, num_samples, num_steps, init_audio, init_audio_noise], outputs=[output_audio, output_plot])
# clear_button button to reset everything
clear_button.click(fn=lambda: [3, 15, None, 0.70, None, None], outputs=[num_samples, num_steps, init_audio, init_audio_noise, output_audio, output_plot])
if __name__ == "__main__":
demo.launch() |