|
import numpy as np |
|
import torch |
|
import ttach as tta |
|
from typing import Callable, List, Tuple |
|
from einops import rearrange |
|
from pytorch_grad_cam.activations_and_gradients import ActivationsAndGradients |
|
from pytorch_grad_cam.utils.svd_on_activations import get_2d_projection |
|
from pytorch_grad_cam.utils.image import scale_cam_image |
|
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget |
|
|
|
|
|
class BaseCAM: |
|
def __init__(self, |
|
model: torch.nn.Module, |
|
target_layers: List[torch.nn.Module], |
|
use_cuda: bool = False, |
|
reshape_transform: Callable = None, |
|
compute_input_gradient: bool = False, |
|
uses_gradients: bool = True) -> None: |
|
self.model = model.eval() |
|
self.target_layers = target_layers |
|
self.cuda = use_cuda |
|
if self.cuda: |
|
self.model = model.cuda() |
|
self.reshape_transform = reshape_transform |
|
self.compute_input_gradient = compute_input_gradient |
|
self.uses_gradients = uses_gradients |
|
self.activations_and_grads = ActivationsAndGradients( |
|
self.model, target_layers, reshape_transform) |
|
|
|
""" Get a vector of weights for every channel in the target layer. |
|
Methods that return weights channels, |
|
will typically need to only implement this function. """ |
|
|
|
def get_cam_weights(self, |
|
input_tensor: torch.Tensor, |
|
target_layers: List[torch.nn.Module], |
|
targets: List[torch.nn.Module], |
|
activations: torch.Tensor, |
|
grads: torch.Tensor) -> np.ndarray: |
|
raise Exception("Not Implemented") |
|
|
|
def get_cam_image(self, |
|
input_tensor: torch.Tensor, |
|
target_layer: torch.nn.Module, |
|
targets: List[torch.nn.Module], |
|
activations: torch.Tensor, |
|
grads: torch.Tensor, |
|
eigen_smooth: bool = False) -> np.ndarray: |
|
|
|
weights = self.get_cam_weights(input_tensor, |
|
target_layer, |
|
targets, |
|
activations, |
|
grads) |
|
weighted_activations = weights[:, None, :] * activations |
|
H = W = int(weighted_activations.shape[1] ** 0.5) |
|
weighted_activations = rearrange(weighted_activations, "b (h w) c -> b c h w", h=H, w=W) |
|
if eigen_smooth: |
|
cam = get_2d_projection(weighted_activations) |
|
else: |
|
cam = weighted_activations.sum(axis=1) |
|
return cam |
|
|
|
def forward(self, |
|
input_tensor: torch.Tensor, |
|
targets: List[torch.nn.Module], |
|
eigen_smooth: bool = False, |
|
return_probs: bool = False) -> np.ndarray: |
|
|
|
if self.cuda: |
|
input_tensor = input_tensor.cuda() |
|
|
|
if self.compute_input_gradient: |
|
input_tensor = torch.autograd.Variable(input_tensor, |
|
requires_grad=True) |
|
|
|
outputs = self.activations_and_grads(input_tensor) |
|
target_categories = np.argmax(outputs.cpu().data.numpy(), axis=-1) |
|
if targets is None: |
|
targets = [ClassifierOutputTarget( |
|
category) for category in target_categories] |
|
|
|
if self.uses_gradients: |
|
self.model.zero_grad() |
|
loss = sum([target(output) |
|
for target, output in zip(targets, outputs)]) |
|
loss.backward(retain_graph=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cam_per_layer = self.compute_cam_per_layer(input_tensor, |
|
targets, |
|
eigen_smooth) |
|
if not return_probs: |
|
return self.aggregate_multi_layers(cam_per_layer), target_categories |
|
return self.aggregate_multi_layers(cam_per_layer), torch.nn.functional.softmax(outputs, dim=-1).detach().cpu().numpy() |
|
|
|
def get_target_width_height(self, |
|
input_tensor: torch.Tensor) -> Tuple[int, int]: |
|
width, height = input_tensor.size(-1), input_tensor.size(-2) |
|
return width, height |
|
|
|
def compute_cam_per_layer( |
|
self, |
|
input_tensor: torch.Tensor, |
|
targets: List[torch.nn.Module], |
|
eigen_smooth: bool) -> np.ndarray: |
|
activations_list = [a.cpu().data.numpy() |
|
for a in self.activations_and_grads.activations] |
|
grads_list = [g.cpu().data.numpy() |
|
for g in self.activations_and_grads.gradients] |
|
target_size = self.get_target_width_height(input_tensor) |
|
|
|
cam_per_target_layer = [] |
|
|
|
for i in range(len(self.target_layers)): |
|
target_layer = self.target_layers[i] |
|
layer_activations = None |
|
layer_grads = None |
|
if i < len(activations_list): |
|
layer_activations = activations_list[i] |
|
if i < len(grads_list): |
|
layer_grads = grads_list[i] |
|
|
|
cam = self.get_cam_image(input_tensor, |
|
target_layer, |
|
targets, |
|
layer_activations, |
|
layer_grads, |
|
eigen_smooth) |
|
cam = np.maximum(cam, 0) |
|
scaled = scale_cam_image(cam, target_size) |
|
cam_per_target_layer.append(scaled[:, None, :]) |
|
|
|
return cam_per_target_layer |
|
|
|
def aggregate_multi_layers( |
|
self, |
|
cam_per_target_layer: np.ndarray) -> np.ndarray: |
|
cam_per_target_layer = np.concatenate(cam_per_target_layer, axis=1) |
|
cam_per_target_layer = np.maximum(cam_per_target_layer, 0) |
|
result = np.mean(cam_per_target_layer, axis=1) |
|
return scale_cam_image(result) |
|
|
|
def forward_augmentation_smoothing(self, |
|
input_tensor: torch.Tensor, |
|
targets: List[torch.nn.Module], |
|
eigen_smooth: bool = False, |
|
return_probs: bool = False) -> np.ndarray: |
|
transforms = tta.Compose( |
|
[ |
|
tta.HorizontalFlip(), |
|
tta.Multiply(factors=[0.9, 1, 1.1]), |
|
] |
|
) |
|
cams = [] |
|
for transform in transforms: |
|
augmented_tensor = transform.augment_image(input_tensor) |
|
cam, b = self.forward(augmented_tensor, |
|
targets, |
|
eigen_smooth, return_probs=return_probs) |
|
|
|
|
|
cam = cam[:, None, :, :] |
|
cam = torch.from_numpy(cam) |
|
cam = transform.deaugment_mask(cam) |
|
|
|
|
|
cam = cam.numpy() |
|
cam = cam[:, 0, :, :] |
|
cams.append(cam) |
|
|
|
cam = np.mean(np.float32(cams), axis=0) |
|
return cam, b |
|
|
|
def __call__(self, |
|
input_tensor: torch.Tensor, |
|
targets: List[torch.nn.Module] = None, |
|
aug_smooth: bool = False, |
|
eigen_smooth: bool = False, |
|
return_probs: bool = False) -> np.ndarray: |
|
|
|
|
|
if aug_smooth is True: |
|
return self.forward_augmentation_smoothing( |
|
input_tensor, targets, eigen_smooth, return_probs=return_probs) |
|
|
|
return self.forward(input_tensor, targets, |
|
eigen_smooth, return_probs=return_probs) |
|
|
|
def __del__(self): |
|
self.activations_and_grads.release() |
|
|
|
def __enter__(self): |
|
return self |
|
|
|
def __exit__(self, exc_type, exc_value, exc_tb): |
|
self.activations_and_grads.release() |
|
if isinstance(exc_value, IndexError): |
|
|
|
print( |
|
f"An exception occurred in CAM with block: {exc_type}. Message: {exc_value}") |
|
return True |
|
|