Spaces:
Runtime error
Runtime error
File size: 8,582 Bytes
61cdcf9 f7f7d9b 61cdcf9 f7f7d9b 61cdcf9 f7f7d9b 61cdcf9 0f1946e 61cdcf9 0f1946e f7f7d9b 61cdcf9 0f1946e 2add774 0f1946e 61cdcf9 0f1946e 61cdcf9 0f1946e 61cdcf9 f7f7d9b 61cdcf9 2add774 61cdcf9 0f1946e 61cdcf9 0f1946e 61cdcf9 f7f7d9b 61cdcf9 2add774 61cdcf9 0f1946e 61cdcf9 0f1946e 61cdcf9 2add774 61cdcf9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": 2.8891853944186117e+38,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 616
},
"id": 2.8891853944186117e+38,
"outputId": "b60a6d5e-045d-4b40-bfd8-6caa407a34df",
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7860\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import numpy as np\n",
"import gradio as gr\n",
"import os\n",
"from PIL import Image\n",
"from functools import partial\n",
"\n",
"def retrieve_input_image_wild(dataset, inputs):\n",
" img_id = inputs\n",
" img_path = os.path.join('online_demo', dataset, 'step-100_scale-6.0')\n",
" try:\n",
" image = Image.open(os.path.join(img_path, '%s.jpg' % img_id))\n",
" except:\n",
" image = Image.open(os.path.join(img_path, '%s.png' % img_id))\n",
" \n",
" image.thumbnail([256, 256], Image.Resampling.LANCZOS) \n",
" return image\n",
"\n",
"def retrieve_input_image(dataset, inputs):\n",
" img_id = inputs\n",
" img_path = os.path.join('online_demo', dataset, 'step-100_scale-6.0', img_id, 'input.png')\n",
" image = Image.open(img_path)\n",
" return image\n",
"\n",
"def retrieve_novel_view(dataset, img_id, polar, azimuth, zoom, seed):\n",
" polar = polar // 30 + 1\n",
" azimuth = azimuth // 30\n",
" zoom = int(zoom * 2 + 1)\n",
" img_path = os.path.join('online_demo', dataset, 'step-100_scale-6.0', img_id,\\\n",
" 'polar-%d_azimuth-%d_distance-%d_seed-%d.png' % (polar, azimuth, zoom, seed))\n",
" image = Image.open(img_path)\n",
" return image\n",
" \n",
"\n",
"with gr.Blocks() as demo:\n",
" gr.Markdown(\"Flip text or image files using this demo.\")\n",
" with gr.Tab(\"In-the-wild Images\"):\n",
" with gr.Row():\n",
" with gr.Column(scale=1):\n",
" default_input_image = Image.open( os.path.join('online_demo', 'nerf_wild', 'step-100_scale-6.0', 'car1.png'))\n",
" default_input_image.thumbnail([256, 256], Image.Resampling.LANCZOS) \n",
" input_image = gr.Image(default_input_image, shape=[256, 256])\n",
" options = sorted(next(os.walk('online_demo/nerf_wild/step-100_scale-6.0'))[1])\n",
" img_id = gr.Dropdown(options, value='car1', label='options')\n",
" text_button = gr.Button(\"Load Input Image\")\n",
" retrieve_input_image_dataset = partial(retrieve_input_image_wild, 'nerf_wild')\n",
" text_button.click(retrieve_input_image_dataset, inputs=img_id, outputs=input_image)\n",
"\n",
" with gr.Column(scale=1):\n",
" novel_view = gr.Image(shape=[256, 256])\n",
" inputs = [img_id,\n",
" gr.Slider(-30, 30, value=0, step=30, label='Polar angle (vertical rotation in degrees)'),\n",
" gr.Slider(0, 330, value=0, step=30, label='Azimuth angle (horizontal rotation in degrees)'),\n",
" gr.Slider(-0.5, 0.5, value=0, step=0.5, label='Zoom'),\n",
" gr.Slider(0, 3, value=1, step=1, label='Random seed')]\n",
" \n",
" submit_button = gr.Button(\"Generate Novel View\")\n",
" retrieve_novel_view_dataset = partial(retrieve_novel_view, 'nerf_wild')\n",
" submit_button.click(retrieve_novel_view_dataset, inputs=inputs, outputs=novel_view)\n",
" \n",
" with gr.Tab(\"Google Scanned Objects\"):\n",
" with gr.Row():\n",
" with gr.Column(scale=1):\n",
" default_input_image = Image.open( os.path.join('online_demo', 'GSO', 'step-100_scale-6.0', 'SAMBA_HEMP', 'input.png'))\n",
" default_input_image.thumbnail([256, 256], Image.Resampling.LANCZOS) \n",
" input_image = gr.Image(default_input_image, shape=[256, 256])\n",
" options = sorted(os.listdir('online_demo/GSO/step-100_scale-6.0'))\n",
" img_id = gr.Dropdown(options, value='SAMBA_HEMP', label='options')\n",
" text_button = gr.Button(\"Choose Input Image\")\n",
" retrieve_input_image_dataset = partial(retrieve_input_image, 'GSO')\n",
" text_button.click(retrieve_input_image_dataset, inputs=img_id, outputs=input_image)\n",
"\n",
" with gr.Column(scale=1):\n",
" novel_view = gr.Image(shape=[256, 256])\n",
" inputs = [img_id,\n",
" gr.Slider(-30, 30, value=0, step=30, label='Polar angle (vertical rotation in degrees)'),\n",
" gr.Slider(0, 330, value=0, step=30, label='Azimuth angle (horizontal rotation in degrees)'),\n",
" gr.Slider(-0.5, 0.5, value=0, step=0.5, label='Zoom'),\n",
" gr.Slider(0, 3, value=1, step=1, label='Random seed')]\n",
" \n",
" submit_button = gr.Button(\"Generate Novel View\")\n",
" retrieve_novel_view_dataset = partial(retrieve_novel_view, 'GSO')\n",
" submit_button.click(retrieve_novel_view_dataset, inputs=inputs, outputs=novel_view)\n",
" \n",
" with gr.Tab(\"RTMV\"):\n",
" with gr.Row():\n",
" with gr.Column(scale=1):\n",
" default_input_image = Image.open( os.path.join('online_demo', 'RTMV', 'step-100_scale-6.0', '00000', 'input.png'))\n",
" default_input_image.thumbnail([256, 256], Image.Resampling.LANCZOS) \n",
" input_image = gr.Image(default_input_image, shape=[256, 256])\n",
" options = sorted(os.listdir('online_demo/RTMV/step-100_scale-6.0'))\n",
" img_id = gr.Dropdown(options, value='00000', label='options')\n",
" text_button = gr.Button(\"Choose Input Image\")\n",
" retrieve_input_image_dataset = partial(retrieve_input_image, 'RTMV')\n",
" text_button.click(retrieve_input_image_dataset, inputs=img_id, outputs=input_image)\n",
"\n",
" with gr.Column(scale=1):\n",
" novel_view = gr.Image(shape=[256, 256])\n",
" inputs = [img_id,\n",
" gr.Slider(-30, 30, value=0, step=30, label='Polar angle (vertical rotation in degrees)'),\n",
" gr.Slider(0, 330, value=0, step=30, label='Azimuth angle (horizontal rotation in degrees)'),\n",
" gr.Slider(-0.5, 0.5, value=0, step=0.5, label='Zoom'),\n",
" gr.Slider(0, 3, value=1, step=1, label='Random seed')]\n",
" \n",
" submit_button = gr.Button(\"Generate Novel View\")\n",
" retrieve_novel_view_dataset = partial(retrieve_novel_view, 'RTMV')\n",
" submit_button.click(retrieve_novel_view_dataset, inputs=inputs, outputs=novel_view)\n",
" \n",
" \n",
"\n",
"if __name__ == \"__main__\":\n",
" demo.launch()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2febec07",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"provenance": []
},
"gpuClass": "standard",
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|