Spaces:
Runtime error
Runtime error
import argparse | |
import json | |
import os | |
import re | |
import tempfile | |
import logging | |
logging.getLogger('numba').setLevel(logging.WARNING) | |
import ONNXVITS_infer | |
import librosa | |
import numpy as np | |
import torch | |
from torch import no_grad, LongTensor | |
import commons | |
import utils | |
import gradio as gr | |
import gradio.utils as gr_utils | |
import gradio.processing_utils as gr_processing_utils | |
from models import SynthesizerTrn | |
from text import text_to_sequence, _clean_text | |
from text.symbols import symbols | |
from mel_processing import spectrogram_torch | |
import translators.server as tss | |
import psutil | |
from datetime import datetime | |
from text.cleaners import japanese_cleaners | |
from gradio import routes | |
from typing import List, Type | |
import os | |
def audio_postprocess(self, y): | |
if y is None: | |
return None | |
if gr_utils.validate_url(y): | |
file = gr_processing_utils.download_to_file(y, dir=self.temp_dir) | |
elif isinstance(y, tuple): | |
sample_rate, data = y | |
file = tempfile.NamedTemporaryFile( | |
suffix=".wav", dir=self.temp_dir, delete=False | |
) | |
gr_processing_utils.audio_to_file(sample_rate, data, file.name) | |
else: | |
file = gr_processing_utils.create_tmp_copy_of_file(y, dir=self.temp_dir) | |
return gr_processing_utils.encode_url_or_file_to_base64(file.name) | |
gr.Audio.postprocess = audio_postprocess | |
limitation = os.getenv("SYSTEM") == "spaces" # limit text and audio length in huggingface spaces | |
languages = ['日本語', '简体中文', 'English'] | |
characters = ['0:特别周', '1:无声铃鹿', '2:东海帝王', '3:丸善斯基', | |
'4:富士奇迹', '5:小栗帽', '6:黄金船', '7:伏特加', | |
'8:大和赤骥', '9:大树快车', '10:草上飞', '11:菱亚马逊', | |
'12:目白麦昆', '13:神鹰', '14:好歌剧', '15:成田白仁', | |
'16:鲁道夫象征', '17:气槽', '18:爱丽数码', '19:青云天空', | |
'20:玉藻十字', '21:美妙姿势', '22:琵琶晨光', '23:重炮', | |
'24:曼城茶座', '25:美普波旁', '26:目白雷恩', '27:菱曙', | |
'28:雪之美人', '29:米浴', '30:艾尼斯风神', '31:爱丽速子', | |
'32:爱慕织姬', '33:稻荷一', '34:胜利奖券', '35:空中神宫', | |
'36:荣进闪耀', '37:真机伶', '38:川上公主', '39:黄金城市', | |
'40:樱花进王', '41:采珠', '42:新光风', '43:东商变革', | |
'44:超级小溪', '45:醒目飞鹰', '46:荒漠英雄', '47:东瀛佐敦', | |
'48:中山庆典', '49:成田大进', '50:西野花', '51:春乌拉拉', | |
'52:青竹回忆', '53:微光飞驹', '54:美丽周日', '55:待兼福来', | |
'56:Mr.C.B', '57:名将怒涛', '58:目白多伯', '59:优秀素质', | |
'60:帝王光环', '61:待兼诗歌剧', '62:生野狄杜斯', '63:目白善信', | |
'64:大拓太阳神', '65:双涡轮', '66:里见光钻', '67:北部玄驹', | |
'68:樱花千代王', '69:天狼星象征', '70:目白阿尔丹', '71:八重无敌', | |
'72:鹤丸刚志', '73:目白光明', '74:樱花桂冠', '75:成田路', | |
'76:也文摄辉', '77:吉兆', '78:谷野美酒', '79:第一红宝石', | |
'80:真弓快车', '81:骏川手纲', '82:凯斯奇迹', '83:小林历奇', | |
'84:北港火山', '85:奇锐骏', '86:秋川理事长'] | |
def show_memory_info(hint): | |
pid = os.getpid() | |
p = psutil.Process(pid) | |
info = p.memory_info() | |
memory = info.rss / 1024.0 / 1024 | |
print("{} 内存占用: {} MB".format(hint, memory)) | |
def text_to_phoneme(text, symbols, is_symbol): | |
_symbol_to_id = {s: i for i, s in enumerate(symbols)} | |
sequence = "" | |
if not is_symbol: | |
clean_text = japanese_cleaners(text) | |
else: | |
clean_text = text | |
for symbol in clean_text: | |
if symbol not in _symbol_to_id.keys(): | |
continue | |
symbol_id = _symbol_to_id[symbol] | |
sequence += symbol | |
return sequence | |
def get_text(text, hps, is_symbol): | |
text_norm = text_to_sequence(text, hps.symbols, [] if is_symbol else hps.data.text_cleaners) | |
if hps.data.add_blank: | |
text_norm = commons.intersperse(text_norm, 0) | |
text_norm = LongTensor(text_norm) | |
return text_norm | |
hps = utils.get_hparams_from_file("./configs/uma87.json") | |
symbols = hps.symbols | |
net_g = ONNXVITS_infer.SynthesizerTrn( | |
len(hps.symbols), | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
**hps.model) | |
_ = net_g.eval() | |
_ = utils.load_checkpoint("pretrained_models/G_1153000.pth", net_g) | |
def to_symbol_fn(is_symbol_input, input_text, temp_text): | |
return (_clean_text(input_text, hps.data.text_cleaners), input_text) if is_symbol_input \ | |
else (temp_text, temp_text) | |
def infer2(text_raw, character, language, duration, noise_scale, noise_scale_w, is_symbol): | |
return (None, None, None, None) | |
def infer(text_raw, character, language, duration, noise_scale, noise_scale_w, is_symbol): | |
# check character & duraction parameter | |
if language not in languages: | |
print("Error: No such language\n") | |
return "Error: No such language", None, None, None | |
if character not in characters: | |
print("Error: No such character\n") | |
return "Error: No such character", None, None, None | |
# check text length | |
if limitation: | |
text_len = len(text_raw) if is_symbol else len(re.sub("\[([A-Z]{2})\]", "", text_raw)) | |
max_len = 150 | |
if is_symbol: | |
max_len *= 3 | |
if text_len > max_len: | |
print(f"Refused: Text too long ({text_len}).") | |
return "Error: Text is too long", None, None, None | |
if text_len == 0: | |
print("Refused: Text length is zero.") | |
return "Error: Please input text!", None, None, None | |
if is_symbol: | |
text = text_raw | |
elif language == '日本語': | |
text = text_raw | |
elif language == '简体中文': | |
text = tss.google(text_raw, from_language='zh', to_language='ja') | |
elif language == 'English': | |
text = tss.google(text_raw, from_language='en', to_language='ja') | |
char_id = int(character.split(':')[0]) | |
stn_tst = get_text(text, hps, is_symbol) | |
with torch.no_grad(): | |
x_tst = stn_tst.unsqueeze(0) | |
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]) | |
sid = torch.LongTensor([char_id]) | |
try: | |
jp2phoneme = text_to_phoneme(text, hps.symbols, is_symbol) | |
durations = net_g.predict_duration(x_tst, x_tst_lengths, sid=sid, noise_scale=noise_scale, | |
noise_scale_w=noise_scale_w, length_scale=duration) | |
char_dur_list = [] | |
for i, char in enumerate(jp2phoneme): | |
char_pos = i * 2 + 1 | |
char_dur = durations[char_pos] | |
char_dur_list.append(char_dur) | |
except IndexError: | |
print("Refused: Phoneme input contains non-phoneme character.") | |
return "Error: You can only input phoneme under phoneme input model", None, None, None | |
char_spacing_dur_list = [] | |
char_spacings = [] | |
for i in range(len(durations)): | |
if i % 2 == 0: # spacing | |
char_spacings.append("spacing") | |
elif i % 2 == 1: # char | |
char_spacings.append(jp2phoneme[int((i - 1) / 2)]) | |
char_spacing_dur_list.append(int(durations[i])) | |
# convert duration information to string | |
duration_info_str = "" | |
for i in range(len(char_spacings)): | |
if i == len(char_spacings) - 1: | |
duration_info_str += "(" + str(char_spacing_dur_list[i]) + ")" | |
elif char_spacings[i] == "spacing": | |
duration_info_str += "(" + str(char_spacing_dur_list[i]) + ")" + ", " | |
else: | |
duration_info_str += char_spacings[i] + ":" + str(char_spacing_dur_list[i]) | |
audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=duration)[0][0,0].data.float().numpy() | |
currentDateAndTime = datetime.now() | |
print(f"\nCharacter {character} inference successful: {text}") | |
if language != '日本語': | |
print(f"translate from {language}: {text_raw}") | |
show_memory_info(str(currentDateAndTime) + " infer调用后") | |
#return (text,(22050, audio), jp2phoneme, duration_info_str) | |
def infer_from_phoneme_dur(duration_info_str, character, duration, noise_scale, noise_scale_w): | |
""" | |
infer from phoneme dur | |
""" | |
try: | |
phonemes = duration_info_str.split(", ") | |
recons_durs = [] | |
recons_phonemes = "" | |
for i, item in enumerate(phonemes): | |
if i == 0: | |
recons_durs.append(int(item.strip("()"))) | |
else: | |
phoneme_n_dur, spacing_dur = item.split("(") | |
recons_phonemes += phoneme_n_dur.split(":")[0] | |
recons_durs.append(int(phoneme_n_dur.split(":")[1])) | |
recons_durs.append(int(spacing_dur.strip(")"))) | |
except ValueError: | |
return ("Error: Format must not be changed!", None) | |
except AssertionError: | |
return ("Error: Format must not be changed!", None) | |
char_id = int(character.split(':')[0]) | |
stn_tst = get_text(recons_phonemes, hps, is_symbol=True) | |
with torch.no_grad(): | |
x_tst = stn_tst.unsqueeze(0) | |
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]) | |
sid = torch.LongTensor([char_id]) | |
audio = net_g.infer_with_duration(x_tst, x_tst_lengths, w_ceil=recons_durs, sid=sid, noise_scale=noise_scale, noise_scale_w=noise_scale_w, | |
length_scale=duration)[0][0, 0].data.cpu().float().numpy() | |
print(f"\nCharacter {character} inference successful: {recons_phonemes}, from {duration_info_str}") | |
return (recons_phonemes, (22050, audio)) | |
download_audio_js = """ | |
() =>{{ | |
let root = document.querySelector("body > gradio-app"); | |
if (root.shadowRoot != null) | |
root = root.shadowRoot; | |
let audio = root.querySelector("#{audio_id}").querySelector("audio"); | |
if (audio == undefined) | |
return; | |
audio = audio.src; | |
let oA = document.createElement("a"); | |
oA.download = Math.floor(Math.random()*100000000)+'.wav'; | |
oA.href = audio; | |
document.body.appendChild(oA); | |
oA.click(); | |
oA.remove(); | |
}} | |
""" | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--share", action="store_true", default=False, help="share gradio app") | |
args = parser.parse_args() | |
app = gr.Blocks() | |
with app: | |
gr.Markdown("# Umamusume voice synthesizer 赛马娘语音合成器\n\n") | |
with gr.Row(): | |
with gr.Column(): | |
# We instantiate the Textbox class | |
textbox = gr.TextArea(label="Text", placeholder="Type your sentence here (Maximum 150 words)", value="こんにちわ。", elem_id=f"tts-input") | |
with gr.Accordion(label="Phoneme Input", open=False): | |
temp_text_var = gr.Variable() | |
symbol_input = gr.Checkbox(value=False, label="Symbol input") | |
symbol_list = gr.Dataset(label="Symbol list", components=[textbox], | |
samples=[[x] for x in symbols], | |
elem_id=f"symbol-list") | |
symbol_list_json = gr.Json(value=symbols, visible=False) | |
symbol_input.change(to_symbol_fn, | |
[symbol_input, textbox, temp_text_var], | |
[textbox, temp_text_var]) | |
symbol_list.click(None, [symbol_list, symbol_list_json], textbox, | |
_js=f""" | |
(i, symbols, text) => {{ | |
let root = document.querySelector("body > gradio-app"); | |
if (root.shadowRoot != null) | |
root = root.shadowRoot; | |
let text_input = root.querySelector("#tts-input").querySelector("textarea"); | |
let startPos = text_input.selectionStart; | |
let endPos = text_input.selectionEnd; | |
let oldTxt = text_input.value; | |
let result = oldTxt.substring(0, startPos) + symbols[i] + oldTxt.substring(endPos); | |
text_input.value = result; | |
let x = window.scrollX, y = window.scrollY; | |
text_input.focus(); | |
text_input.selectionStart = startPos + symbols[i].length; | |
text_input.selectionEnd = startPos + symbols[i].length; | |
text_input.blur(); | |
window.scrollTo(x, y); | |
text = text_input.value; | |
return text; | |
}}""") | |
# select character | |
char_dropdown = gr.Dropdown(choices=characters, value = "0:特别周", label='character') | |
language_dropdown = gr.Dropdown(choices=languages, value = "日本語", label='language') | |
duration_slider = gr.Slider(minimum=0.1, maximum=5, value=1, step=0.1, label='时长 Duration') | |
noise_scale_slider = gr.Slider(minimum=0.1, maximum=5, value=0.667, step=0.001, label='噪声比例 noise_scale') | |
noise_scale_w_slider = gr.Slider(minimum=0.1, maximum=5, value=0.8, step=0.1, label='噪声偏差 noise_scale_w') | |
text_output = gr.Textbox(label="Output Text") | |
phoneme_output = gr.Textbox(label="Output Phonemes", interactive=False) | |
audio_output = gr.Audio(label="Output Audio", elem_id="tts-audio") | |
btn = gr.Button("Generate!") | |
cus_dur_gn_btn = gr.Button("Regenerate with custom phoneme durations") | |
download = gr.Button("Download Audio") | |
download.click(None, [], [], _js=download_audio_js.format(audio_id="tts-audio"), api_name="download_audio") | |
with gr.Accordion(label="Speaking Pace Control", open=True): | |
duration_output = gr.Textbox(label="Duration of each phoneme", placeholder="After you generate a sentence, the detailed information of each phoneme's duration will be presented here.", | |
interactive = True) | |
gr.Markdown( | |
"The number after the : mark represents the length of each phoneme in the generated audio, while the number inside ( ) represents the lenght of spacing between each phoneme and its next phoneme. " | |
"You can manually change the numbers to adjust the length of each phoneme, so that speaking pace can be completely controlled. " | |
"Note that these numbers should be integers only. \n\n(1 represents a length of 0.01161 seconds)\n\n" | |
"音素冒号后的数字代表音素在生成音频中的长度,( )内的数字代表每个音素与下一个音素之间间隔的长度。" | |
"您可以手动修改这些数字来控制每个音素以及间隔的长度,从而完全控制合成音频的说话节奏。" | |
"注意这些数字只能是整数。 \n\n(1 代表 0.01161 秒的长度)\n\n" | |
) | |
#def a1(textbox, char_dropdown, language_dropdown, duration_slider, noise_scale_slider, noise_scale_w_slider, symbol_input): | |
# pass | |
#btn.click(a1, [textbox, char_dropdown, language_dropdown, duration_slider, noise_scale_slider, noise_scale_w_slider, symbol_input], [], api_name="download_audio2") | |
btn.click(infer, inputs=[textbox, char_dropdown, language_dropdown, duration_slider, noise_scale_slider, noise_scale_w_slider, symbol_input], | |
outputs=[text_output, audio_output], api_name="1") | |
# outputs=[text_output, audio_output, phoneme_output, duration_output], api_name="1") | |
cus_dur_gn_btn.click(infer_from_phoneme_dur, inputs=[duration_output, char_dropdown, duration_slider, noise_scale_slider, noise_scale_w_slider], | |
outputs=[phoneme_output, audio_output])#, api_name="2") | |
examples = [['haa\u2193......haa\u2193......haa\u2193......haa\u2193......haa\u2193......haa\u2193......haa\u2193......haa\u2193......haa\u2193......haa\u2193......haa\u2193......haa\u2193......', '29:米浴', '日本語', 1, 0.667, 0.8, True], | |
['お疲れ様です,トレーナーさん。', '1:无声铃鹿', '日本語', 1, 0.667, 0.8, False], | |
['張り切っていこう!', '67:北部玄驹', '日本語', 1, 0.667, 0.8, False], | |
['何でこんなに慣れでんのよ,私のほが先に好きだっだのに。', '10:草上飞', '日本語', 1, 0.667, 0.8, False], | |
['授業中に出しだら,学校生活終わるですわ。', '12:目白麦昆', '日本語', 1, 0.667, 0.8, False], | |
['お帰りなさい,お兄様!', '29:米浴', '日本語', 1, 0.667, 0.8, False], | |
['私の処女をもらっでください!', '29:米浴', '日本語', 1, 0.667, 0.8, False]] | |
gr.Examples( | |
examples=examples, | |
inputs=[textbox, char_dropdown, language_dropdown, | |
duration_slider, noise_scale_slider,noise_scale_w_slider, symbol_input], | |
outputs=[text_output, audio_output], | |
fn=infer | |
) | |
ifa = gr.Interface(lambda: None, inputs=[textbox], outputs=[text_output]) | |
app.queue(concurrency_count=3).launch(show_api=True, share=args.share) |