Spaces:
Paused
Paused
File size: 5,865 Bytes
db6a3b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
from typing import *
import torch
import torch.nn as nn
from ..attention import MultiHeadAttention
from ..norm import LayerNorm32
class AbsolutePositionEmbedder(nn.Module):
"""
Embeds spatial positions into vector representations.
"""
def __init__(self, channels: int, in_channels: int = 3):
super().__init__()
self.channels = channels
self.in_channels = in_channels
self.freq_dim = channels // in_channels // 2
self.freqs = torch.arange(self.freq_dim, dtype=torch.float32) / self.freq_dim
self.freqs = 1.0 / (10000 ** self.freqs)
def _sin_cos_embedding(self, x: torch.Tensor) -> torch.Tensor:
"""
Create sinusoidal position embeddings.
Args:
x: a 1-D Tensor of N indices
Returns:
an (N, D) Tensor of positional embeddings.
"""
self.freqs = self.freqs.to(x.device)
out = torch.outer(x, self.freqs)
out = torch.cat([torch.sin(out), torch.cos(out)], dim=-1)
return out
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Args:
x (torch.Tensor): (N, D) tensor of spatial positions
"""
N, D = x.shape
assert D == self.in_channels, "Input dimension must match number of input channels"
embed = self._sin_cos_embedding(x.reshape(-1))
embed = embed.reshape(N, -1)
if embed.shape[1] < self.channels:
embed = torch.cat([embed, torch.zeros(N, self.channels - embed.shape[1], device=embed.device)], dim=-1)
return embed
class FeedForwardNet(nn.Module):
def __init__(self, channels: int, mlp_ratio: float = 4.0):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(channels, int(channels * mlp_ratio)),
nn.GELU(approximate="tanh"),
nn.Linear(int(channels * mlp_ratio), channels),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.mlp(x)
class TransformerBlock(nn.Module):
"""
Transformer block (MSA + FFN).
"""
def __init__(
self,
channels: int,
num_heads: int,
mlp_ratio: float = 4.0,
attn_mode: Literal["full", "windowed"] = "full",
window_size: Optional[int] = None,
shift_window: Optional[int] = None,
use_checkpoint: bool = False,
use_rope: bool = False,
qk_rms_norm: bool = False,
qkv_bias: bool = True,
ln_affine: bool = False,
):
super().__init__()
self.use_checkpoint = use_checkpoint
self.norm1 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
self.norm2 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
self.attn = MultiHeadAttention(
channels,
num_heads=num_heads,
attn_mode=attn_mode,
window_size=window_size,
shift_window=shift_window,
qkv_bias=qkv_bias,
use_rope=use_rope,
qk_rms_norm=qk_rms_norm,
)
self.mlp = FeedForwardNet(
channels,
mlp_ratio=mlp_ratio,
)
def _forward(self, x: torch.Tensor) -> torch.Tensor:
h = self.norm1(x)
h = self.attn(h)
x = x + h
h = self.norm2(x)
h = self.mlp(h)
x = x + h
return x
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.use_checkpoint:
return torch.utils.checkpoint.checkpoint(self._forward, x, use_reentrant=False)
else:
return self._forward(x)
class TransformerCrossBlock(nn.Module):
"""
Transformer cross-attention block (MSA + MCA + FFN).
"""
def __init__(
self,
channels: int,
ctx_channels: int,
num_heads: int,
mlp_ratio: float = 4.0,
attn_mode: Literal["full", "windowed"] = "full",
window_size: Optional[int] = None,
shift_window: Optional[Tuple[int, int, int]] = None,
use_checkpoint: bool = False,
use_rope: bool = False,
qk_rms_norm: bool = False,
qk_rms_norm_cross: bool = False,
qkv_bias: bool = True,
ln_affine: bool = False,
):
super().__init__()
self.use_checkpoint = use_checkpoint
self.norm1 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
self.norm2 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
self.norm3 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
self.self_attn = MultiHeadAttention(
channels,
num_heads=num_heads,
type="self",
attn_mode=attn_mode,
window_size=window_size,
shift_window=shift_window,
qkv_bias=qkv_bias,
use_rope=use_rope,
qk_rms_norm=qk_rms_norm,
)
self.cross_attn = MultiHeadAttention(
channels,
ctx_channels=ctx_channels,
num_heads=num_heads,
type="cross",
attn_mode="full",
qkv_bias=qkv_bias,
qk_rms_norm=qk_rms_norm_cross,
)
self.mlp = FeedForwardNet(
channels,
mlp_ratio=mlp_ratio,
)
def _forward(self, x: torch.Tensor, context: torch.Tensor):
h = self.norm1(x)
h = self.self_attn(h)
x = x + h
h = self.norm2(x)
h = self.cross_attn(h, context)
x = x + h
h = self.norm3(x)
h = self.mlp(h)
x = x + h
return x
def forward(self, x: torch.Tensor, context: torch.Tensor):
if self.use_checkpoint:
return torch.utils.checkpoint.checkpoint(self._forward, x, context, use_reentrant=False)
else:
return self._forward(x, context)
|