Spaces:
Paused
Paused
File size: 2,650 Bytes
db6a3b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import torch
cube_corners = torch.tensor([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0], [0, 0, 1], [
1, 0, 1], [0, 1, 1], [1, 1, 1]], dtype=torch.int)
cube_neighbor = torch.tensor([[1, 0, 0], [-1, 0, 0], [0, 1, 0], [0, -1, 0], [0, 0, 1], [0, 0, -1]])
cube_edges = torch.tensor([0, 1, 1, 5, 4, 5, 0, 4, 2, 3, 3, 7, 6, 7, 2, 6,
2, 0, 3, 1, 7, 5, 6, 4], dtype=torch.long, requires_grad=False)
def construct_dense_grid(res, device='cuda'):
'''construct a dense grid based on resolution'''
res_v = res + 1
vertsid = torch.arange(res_v ** 3, device=device)
coordsid = vertsid.reshape(res_v, res_v, res_v)[:res, :res, :res].flatten()
cube_corners_bias = (cube_corners[:, 0] * res_v + cube_corners[:, 1]) * res_v + cube_corners[:, 2]
cube_fx8 = (coordsid.unsqueeze(1) + cube_corners_bias.unsqueeze(0).to(device))
verts = torch.stack([vertsid // (res_v ** 2), (vertsid // res_v) % res_v, vertsid % res_v], dim=1)
return verts, cube_fx8
def construct_voxel_grid(coords):
verts = (cube_corners.unsqueeze(0).to(coords) + coords.unsqueeze(1)).reshape(-1, 3)
verts_unique, inverse_indices = torch.unique(verts, dim=0, return_inverse=True)
cubes = inverse_indices.reshape(-1, 8)
return verts_unique, cubes
def cubes_to_verts(num_verts, cubes, value, reduce='mean'):
"""
Args:
cubes [Vx8] verts index for each cube
value [Vx8xM] value to be scattered
Operation:
reduced[cubes[i][j]][k] += value[i][k]
"""
M = value.shape[2] # number of channels
reduced = torch.zeros(num_verts, M, device=cubes.device)
return torch.scatter_reduce(reduced, 0,
cubes.unsqueeze(-1).expand(-1, -1, M).flatten(0, 1),
value.flatten(0, 1), reduce=reduce, include_self=False)
def sparse_cube2verts(coords, feats, training=True):
new_coords, cubes = construct_voxel_grid(coords)
new_feats = cubes_to_verts(new_coords.shape[0], cubes, feats)
if training:
con_loss = torch.mean((feats - new_feats[cubes]) ** 2)
else:
con_loss = 0.0
return new_coords, new_feats, con_loss
def get_dense_attrs(coords : torch.Tensor, feats : torch.Tensor, res : int, sdf_init=True):
F = feats.shape[-1]
dense_attrs = torch.zeros([res] * 3 + [F], device=feats.device)
if sdf_init:
dense_attrs[..., 0] = 1 # initial outside sdf value
dense_attrs[coords[:, 0], coords[:, 1], coords[:, 2], :] = feats
return dense_attrs.reshape(-1, F)
def get_defomed_verts(v_pos : torch.Tensor, deform : torch.Tensor, res):
return v_pos / res - 0.5 + (1 - 1e-8) / (res * 2) * torch.tanh(deform)
|