File size: 2,594 Bytes
b213d84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
import numpy as np
import torch
from densepose import add_densepose_config
from densepose.vis.densepose_results import (
DensePoseResultsFineSegmentationVisualizer as Visualizer,
)
from densepose.vis.extractor import DensePoseResultExtractor
from detectron2.config import get_cfg
from detectron2.engine import DefaultPredictor
class DensePosePredictor(object):
def __init__(self):
cfg = get_cfg()
add_densepose_config(cfg)
cfg.merge_from_file(
"ckpts/densepose/densepose_rcnn_R_50_FPN_s1x.yaml"
) # Use the path to the config file from densepose
cfg.MODEL.WEIGHTS = "ckpts/densepose/model_final_162be9.pkl" # Use the path to the pre-trained model weights
cfg.MODEL.DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 # Adjust as needed
self.predictor = DefaultPredictor(cfg)
self.extractor = DensePoseResultExtractor()
self.visualizer = Visualizer()
def predict(self, image):
if isinstance(image, str):
image = cv2.imread(image)
with torch.no_grad():
outputs = self.predictor(image)["instances"]
outputs = self.extractor(outputs)
return outputs
def predict_iuv(self, image):
outputs = self.predict(image)
img_i = outputs[0][0].labels[None, ...]
img_uv = outputs[0][0].uv
img_uv = (img_uv - img_uv.min()) / (img_uv.max() - img_uv.min())
img_uv *= 255
img_iuv = torch.cat([img_i, img_uv], dim=0)
img_iuv = img_iuv.permute(1, 2, 0)
img_iuv = img_iuv.cpu().numpy()
position = [int(x) for x in outputs[1][0].cpu().numpy().tolist()]
x1, y1, w, h = position
x2 = x1 + w
y2 = y1 + h
image_iuv = np.zeros(image.shape, dtype=image.dtype)
image_iuv[y1:y2, x1:x2, :] = img_iuv
image_iuv = image_iuv[:, :, [0, 2, 1]]
return image_iuv
def predict_seg(self, image):
outputs = self.predict(image)
image_seg = np.zeros(image.shape, dtype=image.dtype)
self.visualizer.visualize(image_seg, outputs)
return image_seg
if __name__ == "__main__":
import sys
import cv2
image_path = sys.argv[1]
image = cv2.imread(image_path)
predictor = DensePosePredictor()
image_iuv = predictor.predict_iuv(image)
image_seg = predictor.predict_seg(image)
cv2.imwrite(".".join(image_path.split(".")[:-1]) + "_iuv.jpg", image_iuv)
cv2.imwrite(".".join(image_path.split(".")[:-1]) + "_seg.jpg", image_seg)
|