|
import os |
|
from typing import Union |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
from diffusers.image_processor import VaeImageProcessor |
|
from PIL import Image |
|
from SCHP import SCHP |
|
|
|
from utils.densepose_for_mask import DensePose |
|
|
|
DENSE_INDEX_MAP = { |
|
"background": [0], |
|
"torso": [1, 2], |
|
"right hand": [3], |
|
"left hand": [4], |
|
"right foot": [5], |
|
"left foot": [6], |
|
"right thigh": [7, 9], |
|
"left thigh": [8, 10], |
|
"right leg": [11, 13], |
|
"left leg": [12, 14], |
|
"left big arm": [15, 17], |
|
"right big arm": [16, 18], |
|
"left forearm": [19, 21], |
|
"right forearm": [20, 22], |
|
"face": [23, 24], |
|
"thighs": [7, 8, 9, 10], |
|
"legs": [11, 12, 13, 14], |
|
"hands": [3, 4], |
|
"feet": [5, 6], |
|
"big arms": [15, 16, 17, 18], |
|
"forearms": [19, 20, 21, 22], |
|
} |
|
|
|
ATR_MAPPING = { |
|
"Background": 0, |
|
"Hat": 1, |
|
"Hair": 2, |
|
"Sunglasses": 3, |
|
"Upper-clothes": 4, |
|
"Skirt": 5, |
|
"Pants": 6, |
|
"Dress": 7, |
|
"Belt": 8, |
|
"Left-shoe": 9, |
|
"Right-shoe": 10, |
|
"Face": 11, |
|
"Left-leg": 12, |
|
"Right-leg": 13, |
|
"Left-arm": 14, |
|
"Right-arm": 15, |
|
"Bag": 16, |
|
"Scarf": 17, |
|
} |
|
|
|
LIP_MAPPING = { |
|
"Background": 0, |
|
"Hat": 1, |
|
"Hair": 2, |
|
"Glove": 3, |
|
"Sunglasses": 4, |
|
"Upper-clothes": 5, |
|
"Dress": 6, |
|
"Coat": 7, |
|
"Socks": 8, |
|
"Pants": 9, |
|
"Jumpsuits": 10, |
|
"Scarf": 11, |
|
"Skirt": 12, |
|
"Face": 13, |
|
"Left-arm": 14, |
|
"Right-arm": 15, |
|
"Left-leg": 16, |
|
"Right-leg": 17, |
|
"Left-shoe": 18, |
|
"Right-shoe": 19, |
|
} |
|
|
|
PROTECT_BODY_PARTS = { |
|
"upper": ["Left-leg", "Right-leg"], |
|
"lower": ["Right-arm", "Left-arm", "Face"], |
|
"overall": [], |
|
"inner": ["Left-leg", "Right-leg"], |
|
"outer": ["Left-leg", "Right-leg"], |
|
} |
|
PROTECT_CLOTH_PARTS = { |
|
"upper": {"ATR": ["Skirt", "Pants"], "LIP": ["Skirt", "Pants"]}, |
|
"lower": {"ATR": ["Upper-clothes"], "LIP": ["Upper-clothes", "Coat"]}, |
|
"overall": {"ATR": [], "LIP": []}, |
|
"inner": { |
|
"ATR": ["Dress", "Coat", "Skirt", "Pants"], |
|
"LIP": ["Dress", "Coat", "Skirt", "Pants", "Jumpsuits"], |
|
}, |
|
"outer": { |
|
"ATR": ["Dress", "Pants", "Skirt"], |
|
"LIP": ["Upper-clothes", "Dress", "Pants", "Skirt", "Jumpsuits"], |
|
}, |
|
} |
|
MASK_CLOTH_PARTS = { |
|
"upper": ["Upper-clothes", "Coat", "Dress", "Jumpsuits"], |
|
"lower": ["Pants", "Skirt", "Dress", "Jumpsuits"], |
|
"overall": ["Upper-clothes", "Dress", "Pants", "Skirt", "Coat", "Jumpsuits"], |
|
"inner": ["Upper-clothes"], |
|
"outer": [ |
|
"Coat", |
|
], |
|
} |
|
MASK_DENSE_PARTS = { |
|
"upper": ["torso", "big arms", "forearms"], |
|
"lower": ["thighs", "legs"], |
|
"overall": ["torso", "thighs", "legs", "big arms", "forearms"], |
|
"inner": ["torso"], |
|
"outer": ["torso", "big arms", "forearms"], |
|
} |
|
|
|
schp_public_protect_parts = [ |
|
"Hat", |
|
"Hair", |
|
"Sunglasses", |
|
"Left-shoe", |
|
"Right-shoe", |
|
"Bag", |
|
"Glove", |
|
"Scarf", |
|
] |
|
schp_protect_parts = { |
|
"upper": ["Left-leg", "Right-leg", "Skirt", "Pants", "Jumpsuits"], |
|
"lower": ["Left-arm", "Right-arm", "Upper-clothes", "Coat"], |
|
"overall": [], |
|
"inner": ["Left-leg", "Right-leg", "Skirt", "Pants", "Jumpsuits", "Coat"], |
|
"outer": ["Left-leg", "Right-leg", "Skirt", "Pants", "Jumpsuits", "Upper-clothes"], |
|
} |
|
schp_mask_parts = { |
|
"upper": ["Upper-clothes", "Dress", "Coat", "Jumpsuits"], |
|
"lower": ["Pants", "Skirt", "Dress", "Jumpsuits", "socks"], |
|
"overall": [ |
|
"Upper-clothes", |
|
"Dress", |
|
"Pants", |
|
"Skirt", |
|
"Coat", |
|
"Jumpsuits", |
|
"socks", |
|
], |
|
"inner": ["Upper-clothes"], |
|
"outer": [ |
|
"Coat", |
|
], |
|
} |
|
|
|
dense_mask_parts = { |
|
"upper": ["torso", "big arms", "forearms"], |
|
"lower": ["thighs", "legs"], |
|
"overall": ["torso", "thighs", "legs", "big arms", "forearms"], |
|
"inner": ["torso"], |
|
"outer": ["torso", "big arms", "forearms"], |
|
} |
|
|
|
|
|
def vis_mask(image, mask): |
|
image = np.array(image).astype(np.uint8) |
|
mask = np.array(mask).astype(np.uint8) |
|
mask[mask > 127] = 255 |
|
mask[mask <= 127] = 0 |
|
mask = np.expand_dims(mask, axis=-1) |
|
mask = np.repeat(mask, 3, axis=-1) |
|
mask = mask / 255 |
|
return Image.fromarray((image * (1 - mask)).astype(np.uint8)) |
|
|
|
|
|
def part_mask_of(part: Union[str, list], parse: np.ndarray, mapping: dict): |
|
if isinstance(part, str): |
|
part = [part] |
|
mask = np.zeros_like(parse) |
|
for _ in part: |
|
if _ not in mapping: |
|
continue |
|
if isinstance(mapping[_], list): |
|
for i in mapping[_]: |
|
mask += parse == i |
|
else: |
|
mask += parse == mapping[_] |
|
return mask |
|
|
|
|
|
def hull_mask(mask_area: np.ndarray): |
|
ret, binary = cv2.threshold(mask_area, 127, 255, cv2.THRESH_BINARY) |
|
contours, hierarchy = cv2.findContours( |
|
binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE |
|
) |
|
hull_mask = np.zeros_like(mask_area) |
|
for c in contours: |
|
hull = cv2.convexHull(c) |
|
hull_mask = cv2.fillPoly(np.zeros_like(mask_area), [hull], 255) | hull_mask |
|
return hull_mask |
|
|
|
|
|
class AutoMasker: |
|
def __init__( |
|
self, |
|
device="cuda", |
|
): |
|
densepose_ckpt = "./ckpts/densepose" |
|
schp_ckpt = "./ckpts/schp" |
|
np.random.seed(0) |
|
torch.manual_seed(0) |
|
torch.cuda.manual_seed(0) |
|
|
|
self.densepose_processor = DensePose(densepose_ckpt, device) |
|
self.schp_processor_atr = SCHP( |
|
ckpt_path=os.path.join(schp_ckpt, "exp-schp-201908301523-atr.pth"), |
|
device=device, |
|
) |
|
self.schp_processor_lip = SCHP( |
|
ckpt_path=os.path.join(schp_ckpt, "exp-schp-201908261155-lip.pth"), |
|
device=device, |
|
) |
|
|
|
self.mask_processor = VaeImageProcessor( |
|
vae_scale_factor=8, |
|
do_normalize=False, |
|
do_binarize=True, |
|
do_convert_grayscale=True, |
|
) |
|
|
|
def process_densepose(self, image_or_path): |
|
return self.densepose_processor(image_or_path, resize=1024) |
|
|
|
def process_schp_lip(self, image_or_path): |
|
return self.schp_processor_lip(image_or_path) |
|
|
|
def process_schp_atr(self, image_or_path): |
|
return self.schp_processor_atr(image_or_path) |
|
|
|
def preprocess_image(self, image_or_path): |
|
return { |
|
"densepose": self.densepose_processor(image_or_path, resize=1024), |
|
"schp_atr": self.schp_processor_atr(image_or_path), |
|
"schp_lip": self.schp_processor_lip(image_or_path), |
|
} |
|
|
|
@staticmethod |
|
def cloth_agnostic_mask( |
|
densepose_mask: Image.Image, |
|
schp_lip_mask: Image.Image, |
|
schp_atr_mask: Image.Image, |
|
part: str = "overall", |
|
**kwargs, |
|
): |
|
assert part in [ |
|
"upper", |
|
"lower", |
|
"overall", |
|
"inner", |
|
"outer", |
|
], f"part should be one of ['upper', 'lower', 'overall', 'inner', 'outer'], but got {part}" |
|
w, h = densepose_mask.size |
|
|
|
dilate_kernel = max(w, h) // 250 |
|
dilate_kernel = dilate_kernel if dilate_kernel % 2 == 1 else dilate_kernel + 1 |
|
dilate_kernel = np.ones((dilate_kernel, dilate_kernel), np.uint8) |
|
|
|
kernal_size = max(w, h) // 25 |
|
kernal_size = kernal_size if kernal_size % 2 == 1 else kernal_size + 1 |
|
|
|
densepose_mask = np.array(densepose_mask) |
|
schp_lip_mask = np.array(schp_lip_mask) |
|
schp_atr_mask = np.array(schp_atr_mask) |
|
|
|
|
|
hands_protect_area = part_mask_of( |
|
["hands", "feet"], densepose_mask, DENSE_INDEX_MAP |
|
) |
|
hands_protect_area = cv2.dilate(hands_protect_area, dilate_kernel, iterations=1) |
|
hands_protect_area = hands_protect_area & ( |
|
part_mask_of( |
|
["Left-arm", "Right-arm", "Left-leg", "Right-leg"], |
|
schp_atr_mask, |
|
ATR_MAPPING, |
|
) |
|
| part_mask_of( |
|
["Left-arm", "Right-arm", "Left-leg", "Right-leg"], |
|
schp_lip_mask, |
|
LIP_MAPPING, |
|
) |
|
) |
|
face_protect_area = part_mask_of("Face", schp_lip_mask, LIP_MAPPING) |
|
|
|
strong_protect_area = hands_protect_area | face_protect_area |
|
|
|
|
|
body_protect_area = part_mask_of( |
|
PROTECT_BODY_PARTS[part], schp_lip_mask, LIP_MAPPING |
|
) | part_mask_of(PROTECT_BODY_PARTS[part], schp_atr_mask, ATR_MAPPING) |
|
hair_protect_area = part_mask_of( |
|
["Hair"], schp_lip_mask, LIP_MAPPING |
|
) | part_mask_of(["Hair"], schp_atr_mask, ATR_MAPPING) |
|
cloth_protect_area = part_mask_of( |
|
PROTECT_CLOTH_PARTS[part]["LIP"], schp_lip_mask, LIP_MAPPING |
|
) | part_mask_of(PROTECT_CLOTH_PARTS[part]["ATR"], schp_atr_mask, ATR_MAPPING) |
|
accessory_protect_area = part_mask_of( |
|
( |
|
accessory_parts := [ |
|
"Hat", |
|
"Glove", |
|
"Sunglasses", |
|
"Bag", |
|
"Left-shoe", |
|
"Right-shoe", |
|
"Scarf", |
|
"Socks", |
|
] |
|
), |
|
schp_lip_mask, |
|
LIP_MAPPING, |
|
) | part_mask_of(accessory_parts, schp_atr_mask, ATR_MAPPING) |
|
weak_protect_area = ( |
|
body_protect_area |
|
| cloth_protect_area |
|
| hair_protect_area |
|
| strong_protect_area |
|
| accessory_protect_area |
|
) |
|
|
|
|
|
strong_mask_area = part_mask_of( |
|
MASK_CLOTH_PARTS[part], schp_lip_mask, LIP_MAPPING |
|
) | part_mask_of(MASK_CLOTH_PARTS[part], schp_atr_mask, ATR_MAPPING) |
|
background_area = part_mask_of( |
|
["Background"], schp_lip_mask, LIP_MAPPING |
|
) & part_mask_of(["Background"], schp_atr_mask, ATR_MAPPING) |
|
mask_dense_area = part_mask_of( |
|
MASK_DENSE_PARTS[part], densepose_mask, DENSE_INDEX_MAP |
|
) |
|
mask_dense_area = cv2.resize( |
|
mask_dense_area.astype(np.uint8), |
|
None, |
|
fx=0.25, |
|
fy=0.25, |
|
interpolation=cv2.INTER_NEAREST, |
|
) |
|
mask_dense_area = cv2.dilate(mask_dense_area, dilate_kernel, iterations=2) |
|
mask_dense_area = cv2.resize( |
|
mask_dense_area.astype(np.uint8), |
|
None, |
|
fx=4, |
|
fy=4, |
|
interpolation=cv2.INTER_NEAREST, |
|
) |
|
|
|
mask_area = ( |
|
np.ones_like(densepose_mask) & (~weak_protect_area) & (~background_area) |
|
) | mask_dense_area |
|
|
|
mask_area = ( |
|
hull_mask(mask_area * 255) // 255 |
|
) |
|
mask_area = mask_area & (~weak_protect_area) |
|
mask_area = cv2.GaussianBlur(mask_area * 255, (kernal_size, kernal_size), 0) |
|
mask_area[mask_area < 25] = 0 |
|
mask_area[mask_area >= 25] = 1 |
|
mask_area = (mask_area | strong_mask_area) & (~strong_protect_area) |
|
mask_area = cv2.dilate(mask_area, dilate_kernel, iterations=1) |
|
|
|
return Image.fromarray(mask_area * 255) |
|
|
|
def __call__( |
|
self, |
|
image: Union[str, Image.Image], |
|
mask_type: str = "upper", |
|
): |
|
assert mask_type in [ |
|
"upper", |
|
"lower", |
|
"overall", |
|
"inner", |
|
"outer", |
|
], f"mask_type should be one of ['upper', 'lower', 'overall', 'inner', 'outer'], but got {mask_type}" |
|
preprocess_results = self.preprocess_image(image) |
|
mask = self.cloth_agnostic_mask( |
|
preprocess_results["densepose"], |
|
preprocess_results["schp_lip"], |
|
preprocess_results["schp_atr"], |
|
part=mask_type, |
|
) |
|
return { |
|
"mask": mask, |
|
"densepose": preprocess_results["densepose"], |
|
"schp_lip": preprocess_results["schp_lip"], |
|
"schp_atr": preprocess_results["schp_atr"], |
|
} |
|
|
|
|
|
if __name__ == "__main__": |
|
import os |
|
import sys |
|
|
|
from PIL import Image |
|
|
|
automasker = AutoMasker() |
|
|
|
image_path = sys.argv[1] |
|
image = Image.open(image_path).convert("RGB") |
|
outputs = automasker( |
|
image, |
|
"upper", |
|
|
|
) |
|
mask = outputs["mask"] |
|
|
|
|
|
|
|
mask.save(".".join(image_path.split(".")[:-1]) + "_mask.jpg") |
|
|