franciszzj's picture
init code
b213d84
# Copyright (c) Facebook, Inc. and its affiliates.
import copy
import logging
import types
from collections import UserDict
from typing import List
from detectron2.utils.logger import log_first_n
__all__ = ["DatasetCatalog", "MetadataCatalog", "Metadata"]
class _DatasetCatalog(UserDict):
"""
A global dictionary that stores information about the datasets and how to obtain them.
It contains a mapping from strings
(which are names that identify a dataset, e.g. "coco_2014_train")
to a function which parses the dataset and returns the samples in the
format of `list[dict]`.
The returned dicts should be in Detectron2 Dataset format (See DATASETS.md for details)
if used with the data loader functionalities in `data/build.py,data/detection_transform.py`.
The purpose of having this catalog is to make it easy to choose
different datasets, by just using the strings in the config.
"""
def register(self, name, func):
"""
Args:
name (str): the name that identifies a dataset, e.g. "coco_2014_train".
func (callable): a callable which takes no arguments and returns a list of dicts.
It must return the same results if called multiple times.
"""
assert callable(func), "You must register a function with `DatasetCatalog.register`!"
assert name not in self, "Dataset '{}' is already registered!".format(name)
self[name] = func
def get(self, name):
"""
Call the registered function and return its results.
Args:
name (str): the name that identifies a dataset, e.g. "coco_2014_train".
Returns:
list[dict]: dataset annotations.
"""
try:
f = self[name]
except KeyError as e:
raise KeyError(
"Dataset '{}' is not registered! Available datasets are: {}".format(
name, ", ".join(list(self.keys()))
)
) from e
return f()
def list(self) -> List[str]:
"""
List all registered datasets.
Returns:
list[str]
"""
return list(self.keys())
def remove(self, name):
"""
Alias of ``pop``.
"""
self.pop(name)
def __str__(self):
return "DatasetCatalog(registered datasets: {})".format(", ".join(self.keys()))
__repr__ = __str__
DatasetCatalog = _DatasetCatalog()
DatasetCatalog.__doc__ = (
_DatasetCatalog.__doc__
+ """
.. automethod:: detectron2.data.catalog.DatasetCatalog.register
.. automethod:: detectron2.data.catalog.DatasetCatalog.get
"""
)
class Metadata(types.SimpleNamespace):
"""
A class that supports simple attribute setter/getter.
It is intended for storing metadata of a dataset and make it accessible globally.
Examples:
::
# somewhere when you load the data:
MetadataCatalog.get("mydataset").thing_classes = ["person", "dog"]
# somewhere when you print statistics or visualize:
classes = MetadataCatalog.get("mydataset").thing_classes
"""
# the name of the dataset
# set default to N/A so that `self.name` in the errors will not trigger getattr again
name: str = "N/A"
_RENAMED = {
"class_names": "thing_classes",
"dataset_id_to_contiguous_id": "thing_dataset_id_to_contiguous_id",
"stuff_class_names": "stuff_classes",
}
def __getattr__(self, key):
if key in self._RENAMED:
log_first_n(
logging.WARNING,
"Metadata '{}' was renamed to '{}'!".format(key, self._RENAMED[key]),
n=10,
)
return getattr(self, self._RENAMED[key])
# "name" exists in every metadata
if len(self.__dict__) > 1:
raise AttributeError(
"Attribute '{}' does not exist in the metadata of dataset '{}'. Available "
"keys are {}.".format(key, self.name, str(self.__dict__.keys()))
)
else:
raise AttributeError(
f"Attribute '{key}' does not exist in the metadata of dataset '{self.name}': "
"metadata is empty."
)
def __setattr__(self, key, val):
if key in self._RENAMED:
log_first_n(
logging.WARNING,
"Metadata '{}' was renamed to '{}'!".format(key, self._RENAMED[key]),
n=10,
)
setattr(self, self._RENAMED[key], val)
# Ensure that metadata of the same name stays consistent
try:
oldval = getattr(self, key)
assert oldval == val, (
"Attribute '{}' in the metadata of '{}' cannot be set "
"to a different value!\n{} != {}".format(key, self.name, oldval, val)
)
except AttributeError:
super().__setattr__(key, val)
def as_dict(self):
"""
Returns all the metadata as a dict.
Note that modifications to the returned dict will not reflect on the Metadata object.
"""
return copy.copy(self.__dict__)
def set(self, **kwargs):
"""
Set multiple metadata with kwargs.
"""
for k, v in kwargs.items():
setattr(self, k, v)
return self
def get(self, key, default=None):
"""
Access an attribute and return its value if exists.
Otherwise return default.
"""
try:
return getattr(self, key)
except AttributeError:
return default
class _MetadataCatalog(UserDict):
"""
MetadataCatalog is a global dictionary that provides access to
:class:`Metadata` of a given dataset.
The metadata associated with a certain name is a singleton: once created, the
metadata will stay alive and will be returned by future calls to ``get(name)``.
It's like global variables, so don't abuse it.
It's meant for storing knowledge that's constant and shared across the execution
of the program, e.g.: the class names in COCO.
"""
def get(self, name):
"""
Args:
name (str): name of a dataset (e.g. coco_2014_train).
Returns:
Metadata: The :class:`Metadata` instance associated with this name,
or create an empty one if none is available.
"""
assert len(name)
r = super().get(name, None)
if r is None:
r = self[name] = Metadata(name=name)
return r
def list(self):
"""
List all registered metadata.
Returns:
list[str]: keys (names of datasets) of all registered metadata
"""
return list(self.keys())
def remove(self, name):
"""
Alias of ``pop``.
"""
self.pop(name)
def __str__(self):
return "MetadataCatalog(registered metadata: {})".format(", ".join(self.keys()))
__repr__ = __str__
MetadataCatalog = _MetadataCatalog()
MetadataCatalog.__doc__ = (
_MetadataCatalog.__doc__
+ """
.. automethod:: detectron2.data.catalog.MetadataCatalog.get
"""
)