Leffa / densepose /modeling /losses /cycle_pix2shape.py
franciszzj's picture
init code
b213d84
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
from typing import Any, List
import torch
from torch import nn
from torch.nn import functional as F
from detectron2.config import CfgNode
from detectron2.structures import Instances
from densepose.data.meshes.catalog import MeshCatalog
from densepose.modeling.cse.utils import normalize_embeddings, squared_euclidean_distance_matrix
from .embed_utils import PackedCseAnnotations
from .mask import extract_data_for_mask_loss_from_matches
def _create_pixel_dist_matrix(grid_size: int) -> torch.Tensor:
rows = torch.arange(grid_size)
cols = torch.arange(grid_size)
# at index `i` contains [row, col], where
# row = i // grid_size
# col = i % grid_size
pix_coords = (
torch.stack(torch.meshgrid(rows, cols), -1).reshape((grid_size * grid_size, 2)).float()
)
return squared_euclidean_distance_matrix(pix_coords, pix_coords)
def _sample_fg_pixels_randperm(fg_mask: torch.Tensor, sample_size: int) -> torch.Tensor:
fg_mask_flattened = fg_mask.reshape((-1,))
num_pixels = int(fg_mask_flattened.sum().item())
fg_pixel_indices = fg_mask_flattened.nonzero(as_tuple=True)[0]
if (sample_size <= 0) or (num_pixels <= sample_size):
return fg_pixel_indices
sample_indices = torch.randperm(num_pixels, device=fg_mask.device)[:sample_size]
return fg_pixel_indices[sample_indices]
def _sample_fg_pixels_multinomial(fg_mask: torch.Tensor, sample_size: int) -> torch.Tensor:
fg_mask_flattened = fg_mask.reshape((-1,))
num_pixels = int(fg_mask_flattened.sum().item())
if (sample_size <= 0) or (num_pixels <= sample_size):
return fg_mask_flattened.nonzero(as_tuple=True)[0]
return fg_mask_flattened.float().multinomial(sample_size, replacement=False)
class PixToShapeCycleLoss(nn.Module):
"""
Cycle loss for pixel-vertex correspondence
"""
def __init__(self, cfg: CfgNode):
super().__init__()
self.shape_names = list(cfg.MODEL.ROI_DENSEPOSE_HEAD.CSE.EMBEDDERS.keys())
self.embed_size = cfg.MODEL.ROI_DENSEPOSE_HEAD.CSE.EMBED_SIZE
self.norm_p = cfg.MODEL.ROI_DENSEPOSE_HEAD.CSE.PIX_TO_SHAPE_CYCLE_LOSS.NORM_P
self.use_all_meshes_not_gt_only = (
cfg.MODEL.ROI_DENSEPOSE_HEAD.CSE.PIX_TO_SHAPE_CYCLE_LOSS.USE_ALL_MESHES_NOT_GT_ONLY
)
self.num_pixels_to_sample = (
cfg.MODEL.ROI_DENSEPOSE_HEAD.CSE.PIX_TO_SHAPE_CYCLE_LOSS.NUM_PIXELS_TO_SAMPLE
)
self.pix_sigma = cfg.MODEL.ROI_DENSEPOSE_HEAD.CSE.PIX_TO_SHAPE_CYCLE_LOSS.PIXEL_SIGMA
self.temperature_pix_to_vertex = (
cfg.MODEL.ROI_DENSEPOSE_HEAD.CSE.PIX_TO_SHAPE_CYCLE_LOSS.TEMPERATURE_PIXEL_TO_VERTEX
)
self.temperature_vertex_to_pix = (
cfg.MODEL.ROI_DENSEPOSE_HEAD.CSE.PIX_TO_SHAPE_CYCLE_LOSS.TEMPERATURE_VERTEX_TO_PIXEL
)
self.pixel_dists = _create_pixel_dist_matrix(cfg.MODEL.ROI_DENSEPOSE_HEAD.HEATMAP_SIZE)
def forward(
self,
proposals_with_gt: List[Instances],
densepose_predictor_outputs: Any,
packed_annotations: PackedCseAnnotations,
embedder: nn.Module,
):
"""
Args:
proposals_with_gt (list of Instances): detections with associated
ground truth data; each item corresponds to instances detected
on 1 image; the number of items corresponds to the number of
images in a batch
densepose_predictor_outputs: an object of a dataclass that contains predictor
outputs with estimated values; assumed to have the following attributes:
* embedding - embedding estimates, tensor of shape [N, D, S, S], where
N = number of instances (= sum N_i, where N_i is the number of
instances on image i)
D = embedding space dimensionality (MODEL.ROI_DENSEPOSE_HEAD.CSE.EMBED_SIZE)
S = output size (width and height)
packed_annotations (PackedCseAnnotations): contains various data useful
for loss computation, each data is packed into a single tensor
embedder (nn.Module): module that computes vertex embeddings for different meshes
"""
pix_embeds = densepose_predictor_outputs.embedding
if self.pixel_dists.device != pix_embeds.device:
# should normally be done only once
self.pixel_dists = self.pixel_dists.to(device=pix_embeds.device)
with torch.no_grad():
mask_loss_data = extract_data_for_mask_loss_from_matches(
proposals_with_gt, densepose_predictor_outputs.coarse_segm
)
# GT masks - tensor of shape [N, S, S] of int64
masks_gt = mask_loss_data.masks_gt.long() # pyre-ignore[16]
assert len(pix_embeds) == len(masks_gt), (
f"Number of instances with embeddings {len(pix_embeds)} != "
f"number of instances with GT masks {len(masks_gt)}"
)
losses = []
mesh_names = (
self.shape_names
if self.use_all_meshes_not_gt_only
else [
MeshCatalog.get_mesh_name(mesh_id.item())
for mesh_id in packed_annotations.vertex_mesh_ids_gt.unique()
]
)
for pixel_embeddings, mask_gt in zip(pix_embeds, masks_gt):
# pixel_embeddings [D, S, S]
# mask_gt [S, S]
for mesh_name in mesh_names:
mesh_vertex_embeddings = embedder(mesh_name)
# pixel indices [M]
pixel_indices_flattened = _sample_fg_pixels_randperm(
mask_gt, self.num_pixels_to_sample
)
# pixel distances [M, M]
pixel_dists = self.pixel_dists.to(pixel_embeddings.device)[
torch.meshgrid(pixel_indices_flattened, pixel_indices_flattened)
]
# pixel embeddings [M, D]
pixel_embeddings_sampled = normalize_embeddings(
pixel_embeddings.reshape((self.embed_size, -1))[:, pixel_indices_flattened].T
)
# pixel-vertex similarity [M, K]
sim_matrix = pixel_embeddings_sampled.mm(mesh_vertex_embeddings.T)
c_pix_vertex = F.softmax(sim_matrix / self.temperature_pix_to_vertex, dim=1)
c_vertex_pix = F.softmax(sim_matrix.T / self.temperature_vertex_to_pix, dim=1)
c_cycle = c_pix_vertex.mm(c_vertex_pix)
loss_cycle = torch.norm(pixel_dists * c_cycle, p=self.norm_p)
losses.append(loss_cycle)
if len(losses) == 0:
return pix_embeds.sum() * 0
return torch.stack(losses, dim=0).mean()
def fake_value(self, densepose_predictor_outputs: Any, embedder: nn.Module):
losses = [embedder(mesh_name).sum() * 0 for mesh_name in embedder.mesh_names]
losses.append(densepose_predictor_outputs.embedding.sum() * 0)
return torch.mean(torch.stack(losses))