from langchain.prompts.prompt import PromptTemplate from langchain.llms import OpenAI from langchain.chains import ChatVectorDBChain from langchain.chat_models import ChatOpenAI from langchain.prompts.chat import ( ChatPromptTemplate, SystemMessagePromptTemplate, AIMessagePromptTemplate, HumanMessagePromptTemplate, ) from langchain.schema import ( AIMessage, HumanMessage, SystemMessage ) system_template = """Use the following pieces of context to answer the users question. If you don't know the answer, just say that you don't know, don't try to make up an answer. ---------------- {context}""" messages = [ SystemMessagePromptTemplate.from_template(system_template), HumanMessagePromptTemplate.from_template("{question}") ] prompt = ChatPromptTemplate.from_messages(messages) _template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question. You can assume the question about the syllabus of the H2 Economics, H2 History and H2 Geography A-Level Examinations in Singapore. Chat History: {chat_history} Follow Up Input: {question} Standalone question:""" CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template) #template = """You are an AI assistant for answering questions about history, geography or economics for the H2 A-Levels. #You are given the following extracted parts of a long document and a question. Provide a conversational answer. #If you don't know the answer, just say "Hmm, I'm not sure." Don't try to make up an answer. #If the question is not about history, geography or economics, politely inform them that you are tuned to only answer questions about it. #Question: {question} #========= #{context} #========= #Answer in Markdown:""" #QA_PROMPT = PromptTemplate(template=template, input_variables=["question", "context"]) prompt = ChatPromptTemplate.from_messages(messages) def get_chain(vectorstore): llm = ChatOpenAI(temperature=0) qa_chain = ChatVectorDBChain.from_llm( llm, vectorstore, qa_prompt=prompt, condense_question_prompt = CONDENSE_QUESTION_PROMPT ) return qa_chain