File size: 16,691 Bytes
8056499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b24ff2
8056499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22a19aa
8056499
22a19aa
bacc887
8056499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b2a74d
8056499
0b2a74d
 
8056499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import os
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib as mpl
import pycaret
import streamlit as st
from streamlit_option_menu import option_menu
import PIL
from PIL import Image
from PIL import ImageColor
from PIL import ImageDraw
from PIL import ImageFont

def main():
    st.set_page_config(layout="wide")

    hide_streamlit_style = """
                <style>
                #MainMenu {visibility: hidden;}
                footer {visibility: hidden;}
                </style>
                """
    st.markdown(hide_streamlit_style, unsafe_allow_html=True)

    with st.sidebar:
        image = Image.open('itaca_logo.png')
        st.image(image, width=150) #,use_column_width=True)
        page = option_menu(menu_title='Menu',
                        menu_icon="robot",
                        options=["Clustering Analysis",
                                    "Anomaly Detection"],
                        icons=["chat-dots",
                                "key"],
                        default_index=0
                        )

        # Additional section below the option menu
        # st.markdown("---")  # Add a separator line
        st.header("Settings")
        
        p_delimiter = st.selectbox ("Choose a delimiter", [",", ";", "|"])
        num_lines = st.number_input("% of lines to be processed:", min_value=0, max_value=100, value=100)
        graph_select = st.checkbox("Show Graphics", value= True)
        feat_imp_select = st.checkbox("Feature Importance", value= False)

        # Define the options for the dropdown list
        numclusters = [2, 3, 4, 5, 6]
        selected_clusters = st.slider("Choose a number of clusters", min_value=2, max_value=10, value=4)
        
        p_remove_multicollinearity = st.checkbox("Remove Multicollinearity", value=False)
        p_multicollinearity_threshold = st.slider("Choose multicollinearity thresholds", min_value=0.0, max_value=1.0, value=0.9)
        # p_remove_outliers = st.checkbox("Remove Outliers", value=False)
        # p_outliers_method = st.selectbox ("Choose an Outlier Method", ["iforest", "ee", "lof"])
        p_transformation = st.checkbox("Choose Power Transform", value = False)
        p_normalize = st.checkbox("Choose Normalize", value = False)
        p_pca = st.checkbox("Choose PCA", value = False)
        p_pca_method = st.selectbox ("Choose a PCA Method", ["linear", "kernel", "incremental"])

    st.title('ITACA Insurance Core AI Module')

    #col1, col2 = st.columns(2)

    if page == "Clustering Analysis":
        #with col1:
        st.header('Clustering Analysis')

        st.write(
            """
            """
        )
        # import pycaret unsupervised models
        from pycaret.clustering import setup, create_model, assign_model, pull, plot_model
        # import ClusteringExperiment
        from pycaret.clustering import ClusteringExperiment

        # Display the list of CSV files
        directory = "./"
        all_files = os.listdir(directory)
        # Filter files to only include CSV files
        csv_files = [file for file in all_files if file.endswith(".csv")]
        # Select a CSV file from the list
        selected_csv = st.selectbox("Select a CSV file from the list", ["None"] + csv_files)

        # Upload the CSV file
        uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
        
        # Define the unsupervised model
        clusteringmodel = ['kmeans', 'ap', 'meanshift', 'sc', 'hclust', 'dbscan', 'optics', 'birch']
        selected_model = st.selectbox("Choose a clustering model", clusteringmodel)

        # Read and display the CSV file
        if selected_csv != "None" or uploaded_file is not None:
            if uploaded_file:
                try:
                    insurance_claims = pd.read_csv (uploaded_file, sep=p_delimiter)
                except ValueError:
                    insurance_claims = pd.read_csv (uploaded_file, sep=p_delimiter, encoding='latin-1')
                    
            else:
                insurance_claims = pd.read_csv(selected_csv)

            num_rows = int(insurance_claims.shape[0]*(num_lines)/100)
            insurance_claims_reduced = insurance_claims.head(num_rows)
            st.write("Rows to be processed: " + str(num_rows))

            all_columns = insurance_claims_reduced.columns.tolist()
            selected_columns = st.multiselect("Choose columns", all_columns, default=all_columns)
            insurance_claims_reduced = insurance_claims_reduced[selected_columns].copy()
        
            with st.expander("Inference Description", expanded=True):
                insurance_claims_reduced.describe().T

            with st.expander("Head Map", expanded=True):
                cat_col = insurance_claims_reduced.select_dtypes(include=['object']).columns
                num_col = insurance_claims_reduced.select_dtypes(exclude=['object']).columns

                # insurance_claims[num_col].hist(bins=15, figsize=(20, 15), layout=(5, 4))
                # Calculate the correlation matrix
                corr_matrix = insurance_claims_reduced[num_col].corr()
                # Create a Matplotlib figure
                fig, ax = plt.subplots(figsize=(12, 8))
                # Create a heatmap using seaborn
                #st.header("Heat Map")
                sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f', ax=ax)
                # Set the title for the heatmap
                ax.set_title('Correlation Heatmap')
                # Display the heatmap in Streamlit
                st.pyplot(fig)

            if st.button("Prediction"):
                #insurance_claims_reduced = insurance_claims_reduced[selected_columns].copy()
                
                s = setup(insurance_claims_reduced, session_id = 123, remove_multicollinearity=p_remove_multicollinearity, multicollinearity_threshold=p_multicollinearity_threshold,
                        # remove_outliers=p_remove_outliers, outliers_method=p_outliers_method, 
                        transformation=p_transformation, 
                        normalize=p_normalize, pca=p_pca, pca_method=p_pca_method)
                exp_clustering = ClusteringExperiment()
                # init setup on exp
                exp_clustering.setup(insurance_claims_reduced, session_id = 123)

                with st.spinner("Analyzing..."):
                    #with col2:
                    #st.markdown("<br><br><br><br>", unsafe_allow_html=True)
                    # train kmeans model
                    cluster_model = create_model(selected_model, num_clusters = selected_clusters)

                    cluster_model_2 = assign_model(cluster_model)
                    # Calculate summary statistics for each cluster
                    cluster_summary = cluster_model_2.groupby('Cluster').agg(['count', 'mean', 'median', 'min', 'max', 
                                                                                'std', 'var', 'sum', ('quantile_25', lambda x: x.quantile(0.25)), 
                                                                                ('quantile_75', lambda x: x.quantile(0.75)), 'skew'])
                    
                    with st.expander("Cluster Summary", expanded=False):
                        #st.header("Cluster Summary")
                        cluster_summary

                    with st.expander("Model Assign", expanded=False):
                        #st.header("Assign Model")
                        cluster_model_2

                    # all_metrics = get_metrics()
                    # all_metrics

                    with st.expander("Clustering Metrics", expanded=False):
                        #st.header("Clustering Metrics")
                        cluster_results = pull()
                        cluster_results

                    with st.expander("Clustering Plots", expanded=False):
                        if graph_select:
                            #st.header("Clustering Plots")
                            # plot pca cluster plot 
                            plot_model(cluster_model, plot = 'cluster', display_format = 'streamlit')
                            
                            if selected_model != 'ap':
                                plot_model(cluster_model, plot = 'tsne', display_format = 'streamlit')
                            
                            if selected_model not in ('ap', 'meanshift', 'dbscan', 'optics'):
                                plot_model(cluster_model, plot = 'elbow', display_format = 'streamlit')
                            
                            if selected_model not in ('ap', 'meanshift', 'sc', 'hclust', 'dbscan', 'optics'):
                                plot_model(cluster_model, plot = 'silhouette', display_format = 'streamlit')
                            
                            if selected_model not in ('ap', 'sc', 'hclust', 'dbscan', 'optics', 'birch'):
                                plot_model(cluster_model, plot = 'distance', display_format = 'streamlit')
                            
                            if selected_model != 'ap':
                                plot_model(cluster_model, plot = 'distribution', display_format = 'streamlit')  

                    with st.expander("Feature Importance", expanded=False):
                        # Create a Classification Model to extract feature importance
                        if graph_select and feat_imp_select:
                            #st.header("Feature Importance")
                            from pycaret.classification import setup, create_model, get_config
                            s = setup(cluster_model_2, target = 'Cluster')
                            lr = create_model('lr')
                            
                            # this is how you can recreate the table
                            feat_imp = pd.DataFrame({'Feature': get_config('X_train').columns, 'Value' : abs(lr.coef_[0])}).sort_values(by='Value', ascending=False)
                            # sort by feature importance value and filter top 10
                            feat_imp = feat_imp.sort_values(by='Value', ascending=False).head(10)
                            # Display the filtered table in Streamlit
                            # st.dataframe(feat_imp)
                            # Display the filtered table as a bar chart in Streamlit
                            st.bar_chart(feat_imp.set_index('Feature'))

    elif page == "Anomaly Detection":
        #with col1:
        st.header('Anomaly Detection')

        st.write(
            """
            """
        )

        # import pycaret anomaly
        from pycaret.anomaly import setup, create_model, assign_model, pull, plot_model
        # import AnomalyExperiment
        from pycaret.anomaly import AnomalyExperiment

        # Display the list of CSV files
        directory = "./"
        all_files = os.listdir(directory)
        # Filter files to only include CSV files
        csv_files = [file for file in all_files if file.endswith(".csv")]
        # Select a CSV file from the list
        selected_csv = st.selectbox("Select a CSV file from the list", ["None"] + csv_files)
        
        # Upload the CSV file
        uploaded_file = st.file_uploader("Choose a CSV file", type="csv")

        # Define the unsupervised model
        anomalymodel = ['abod', 'cluster', 'cof', 'iforest', 'histogram', 'knn', 'lof', 'svm', 'pca', 'mcd', 'sod', 'sos']
        selected_model = st.selectbox("Choose an anomaly model", anomalymodel)

        # Read and display the CSV file
        if selected_csv != "None" or uploaded_file is not None:
            if uploaded_file:
                try:
                    insurance_claims = pd.read_csv (uploaded_file, sep=p_delimiter)
                except ValueError:
                    insurance_claims = pd.read_csv (uploaded_file, sep=p_delimiter, encoding='latin-1')
                    
            else:
                insurance_claims = pd.read_csv(selected_csv)

            num_rows = int(insurance_claims.shape[0]*(num_lines)/100)
            insurance_claims_reduced = insurance_claims.head(num_rows)
            st.write("Rows to be processed: " + str(num_rows))

            all_columns = insurance_claims_reduced.columns.tolist()
            selected_columns = st.multiselect("Choose columns", all_columns, default=all_columns)
            insurance_claims_reduced = insurance_claims_reduced[selected_columns].copy()

            with st.expander("Inference Description", expanded=True):
                insurance_claims_reduced.describe().T

            with st.expander("Head Map", expanded=True):
                cat_col = insurance_claims_reduced.select_dtypes(include=['object']).columns
                num_col = insurance_claims_reduced.select_dtypes(exclude=['object']).columns

                # insurance_claims[num_col].hist(bins=15, figsize=(20, 15), layout=(5, 4))
                # Calculate the correlation matrix
                corr_matrix = insurance_claims_reduced[num_col].corr()
                # Create a Matplotlib figure
                fig, ax = plt.subplots(figsize=(12, 8))
                # Create a heatmap using seaborn
                #st.header("Heat Map")
                sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f', ax=ax)
                # Set the title for the heatmap
                ax.set_title('Correlation Heatmap')
                # Display the heatmap in Streamlit
                st.pyplot(fig)
            
            if st.button("Prediction"):
            
                s = setup(insurance_claims_reduced, session_id = 123, remove_multicollinearity=p_remove_multicollinearity, multicollinearity_threshold=p_multicollinearity_threshold,
                            # remove_outliers=p_remove_outliers, outliers_method=p_outliers_method, 
                            transformation=p_transformation, 
                            normalize=p_normalize, pca=p_pca, pca_method=p_pca_method)

                exp_anomaly = AnomalyExperiment()
                # init setup on exp
                exp_anomaly.setup(insurance_claims_reduced, session_id = 123)
            
                with st.spinner("Analyzing..."):
                    #with col2:
                    #st.markdown("<br><br><br><br>", unsafe_allow_html=True)
                    # train model
                    anomaly_model = create_model(selected_model)

                    with st.expander("Assign Model", expanded=False):
                        #st.header("Assign Model")
                        anomaly_model_2 = assign_model(anomaly_model)
                        anomaly_model_2

                    with st.expander("Anomaly Metrics", expanded=False):
                        #st.header("Anomaly Metrics")
                        anomaly_results = pull()
                        anomaly_results

                    with st.expander("Anomaly Plots", expanded=False):
                        if graph_select:
                            # plot
                            #st.header("Anomaly Plots")
                            plot_model(anomaly_model, plot = 'tsne', display_format = 'streamlit')
                            plot_model(anomaly_model, plot = 'umap', display_format = 'streamlit')

                    with st.expander("Feature Importance", expanded=False):
                        if graph_select and feat_imp_select:
                            # Create a Classification Model to extract feature importance
                            #st.header("Feature Importance")
                            from pycaret.classification import setup, create_model, get_config
                            s = setup(anomaly_model_2, target = 'Anomaly')
                            lr = create_model('lr')
                            # this is how you can recreate the table
                            feat_imp = pd.DataFrame({'Feature': get_config('X_train').columns, 'Value' : abs(lr.coef_[0])}).sort_values(by='Value', ascending=False)
                            # sort by feature importance value and filter top 10
                            feat_imp = feat_imp.sort_values(by='Value', ascending=False).head(10)
                            # Display the filtered table in Streamlit
                            # st.dataframe(feat_imp)
                            # Display the filtered table as a bar chart in Streamlit
                            st.bar_chart(feat_imp.set_index('Feature'))
try:
    main()
except Exception as e:
    st.sidebar.error(f"An error occurred: {e}")