Spaces:
Runtime error
Runtime error
File size: 4,323 Bytes
7218e93 788ec8d 7218e93 b5160f5 788ec8d 7218e93 788ec8d 7218e93 b5160f5 788ec8d 7218e93 788ec8d b5160f5 7218e93 b5160f5 7218e93 b5160f5 7218e93 030066b 7218e93 b5160f5 7218e93 b5160f5 7218e93 61ca66a b5160f5 7218e93 b5160f5 7218e93 b5160f5 7218e93 61ca66a b5160f5 7218e93 61ca66a b5160f5 7218e93 b5160f5 7218e93 b5160f5 030066b 7218e93 61ca66a 7218e93 b5160f5 788ec8d 7218e93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
from peft import PeftModel
import torch
import transformers
import gradio as gr
import time
MODEL = "decapoda-research/llama-7b-hf"
LORA_WEIGHTS = "tloen/alpaca-lora-7b"
device = "cpu"
print(f"Model device = {device}", flush=True)
tokenizer = LlamaTokenizer.from_pretrained(MODEL)
model = LlamaForCausalLM.from_pretrained(MODEL, device_map={"": device}, low_cpu_mem_usage=True, )
model = PeftModel.from_pretrained(model, LORA_WEIGHTS, device_map={"": device}, torch_dtype=torch.float16)
model.eval()
def generate_prompt(input, history):
if not history:
return f""" Below A dialog, where User interacts with you - the AI.
### Instruction: AI is helpful, kind, obedient, honest, and knows its own limits.
### User: {input}
### Response:
"""
else:
return f"""{history}
### User: {input}
### Response:
"""
# else:
# return f""" Below is an instruction that describes a task. Write a response that appropriately completes the request.
#
# ### Instruction: {instruction}
#
# ### Response:
# """
def eval_prompt(
input: str,
history = "",
temparature = 0.7,
top_p = 0.75,
top_k = 40,
num_beams = 1,
max_new_tokens = 128,
**kwargs):
history = generate_prompt(input, history)
inputs = tokenizer(history, return_tensors = "pt")
input_ids = inputs["input_ids"]
generation_config = GenerationConfig(
temparatue = temparature,
top_p = top_p,
top_k = top_k,
num_beams = num_beams,
repetition_penalty = 1.17,
** kwargs,)
# with torch.inference_mode():
with torch.no_grad():
generation_output = model.generate(
input_ids = input_ids,
generation_config = generation_config,
return_dict_in_generate = True,
output_scores = True,
max_new_tokens = max_new_tokens,
)
s = generation_output.sequences[0]
response = tokenizer.decode(s)
# print(response.split('### Response:')[-1].strip())
bot_response = response.split("### Response:")[-1].strip()
history += bot_response
return history, bot_response
# def run_app():
# g = gr.Interface(
# fn = eval_prompt,
# inputs = [
# gr.components.Textbox(
# lines = 2, label = 'Instruction', placeholder= "Enter an instruction here."),
# gr.components.Textbox(lines = 2, label = 'Input', placeholder = "Add an input here.")
# ],
# outputs = [ gr.inputs.Textbox(lines = 5, label = 'Output') ],
# title = 'Alpaca Demo'
# )
#
# g.queue(concurrency_count=1)
# g.launch(share=True, debug=True)
if __name__ == "__main__":
history = ""
while True:
# testing code for readme
# for instruction in [
# "Tell me about alpacas.",
# "Tell me about the president of Mexico in 2019.",
# "Tell me about the king of France in 2019.",
# "List all Canadian provinces in alphabetical order.",
# "Write a Python program that prints the first 10 Fibonacci numbers.",
# "Write a program that prints the numbers from 1 to 100. But for multiples of three print 'Fizz' instead of the number and for the multiples of five print 'Buzz'. For numbers which are multiples of both three and five print 'FizzBuzz'.",
# "Tell me five words that rhyme with 'shock'.",
# "Translate the sentence 'I have no mouth but I must scream' into Spanish.",
# "Count up from 1 to 500.",
# ]:
print("Input text here: ", end=' ')
user_input = input()
tick = time.time()
history, response = eval_prompt(user_input, history)
print(f"Bot: {response}")
print(f"Present history: {history}")
print(f"Inference time = {time.time() - tick} seconds")
print()
## Run the actual gradio app
# run_app()
|