File size: 4,323 Bytes
7218e93
 
788ec8d
7218e93
 
b5160f5
788ec8d
7218e93
 
 
 
788ec8d
7218e93
b5160f5
 
788ec8d
7218e93
788ec8d
b5160f5
 
 
7218e93
b5160f5
7218e93
b5160f5
7218e93
 
 
030066b
7218e93
b5160f5
7218e93
b5160f5
7218e93
 
 
61ca66a
b5160f5
 
 
 
 
 
 
 
7218e93
b5160f5
 
7218e93
 
 
b5160f5
7218e93
 
61ca66a
b5160f5
 
 
7218e93
 
 
 
 
 
 
61ca66a
b5160f5
7218e93
 
 
 
 
 
 
 
b5160f5
7218e93
b5160f5
 
 
 
030066b
7218e93
 
 
 
 
 
 
 
 
 
 
 
 
 
61ca66a
7218e93
b5160f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
788ec8d
7218e93
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
from peft import PeftModel
import torch
import transformers
import gradio as gr
import time

MODEL = "decapoda-research/llama-7b-hf"
LORA_WEIGHTS = "tloen/alpaca-lora-7b"
device = "cpu"
print(f"Model device = {device}", flush=True)

tokenizer = LlamaTokenizer.from_pretrained(MODEL)
model = LlamaForCausalLM.from_pretrained(MODEL, device_map={"": device}, low_cpu_mem_usage=True, )
model = PeftModel.from_pretrained(model, LORA_WEIGHTS, device_map={"": device}, torch_dtype=torch.float16)

model.eval()

def generate_prompt(input, history):
    if not history:
        return f""" Below A dialog, where User interacts with you - the AI.
        
        ### Instruction: AI is helpful, kind, obedient, honest, and knows its own limits.
        
        ### User: {input}
        
        ### Response:
        """

    else:
        return  f"""{history}
        
        ### User: {input}
        
        ### Response:
        """

    # else:
    #     return f""" Below is an instruction that describes a task.  Write a response that appropriately completes the request.
    #
    #     ### Instruction: {instruction}
    #
    #     ### Response:
    #     """

def eval_prompt(
        input: str,
        history = "",
        temparature = 0.7,
        top_p = 0.75,
        top_k = 40,
        num_beams = 1,
        max_new_tokens = 128,
        **kwargs):

        history = generate_prompt(input, history)
        inputs = tokenizer(history, return_tensors = "pt")
        input_ids = inputs["input_ids"]
        generation_config = GenerationConfig(
            temparatue = temparature,
            top_p = top_p,
            top_k = top_k,
            num_beams = num_beams,
            repetition_penalty = 1.17,
            ** kwargs,)

        # with torch.inference_mode():
        with torch.no_grad():
            generation_output = model.generate(
                input_ids = input_ids,
                generation_config = generation_config,
                return_dict_in_generate = True,
                output_scores = True,
                max_new_tokens = max_new_tokens,
            )
            s = generation_output.sequences[0]
            response = tokenizer.decode(s)
            # print(response.split('### Response:')[-1].strip())
            bot_response = response.split("### Response:")[-1].strip()
            history += bot_response
            return history, bot_response

# def run_app():
    # g = gr.Interface(
    #     fn = eval_prompt,
    #     inputs = [
    #         gr.components.Textbox(
    #             lines = 2, label = 'Instruction', placeholder= "Enter an instruction here."),
    #         gr.components.Textbox(lines = 2, label = 'Input', placeholder = "Add an input here.")
    #     ],
    #     outputs = [ gr.inputs.Textbox(lines = 5, label = 'Output') ],
    #     title = 'Alpaca Demo'
    # )
    #
    # g.queue(concurrency_count=1)
    # g.launch(share=True, debug=True)

if __name__ == "__main__":
    history = ""

    while True:
        # testing code for readme
        # for instruction in [
            # "Tell me about alpacas.",
            # "Tell me about the president of Mexico in 2019.",
            # "Tell me about the king of France in 2019.",
            # "List all Canadian provinces in alphabetical order.",
            # "Write a Python program that prints the first 10 Fibonacci numbers.",
            # "Write a program that prints the numbers from 1 to 100. But for multiples of three print 'Fizz' instead of the number and for the multiples of five print 'Buzz'. For numbers which are multiples of both three and five print 'FizzBuzz'.",
            # "Tell me five words that rhyme with 'shock'.",
            # "Translate the sentence 'I have no mouth but I must scream' into Spanish.",
            # "Count up from 1 to 500.",
        # ]:

            print("Input text here: ", end=' ')
            user_input = input()
            tick = time.time()
            history, response = eval_prompt(user_input, history)
            print(f"Bot: {response}")
            print(f"Present history: {history}")
            print(f"Inference time = {time.time() - tick} seconds")
            print()

    ## Run the actual gradio app
    # run_app()