darshanjani's picture
utils function for inference
3a0062c
raw
history blame
2.03 kB
import albumentations as A
import cv2
from albumentations.pytorch import ToTensorV2
from .config import IMAGE_SIZE, scale
# train_transforms = A.Compose(
# [
# A.LongestMaxSize(max_size=int(IMAGE_SIZE * scale)),
# A.PadIfNeeded(
# min_height=int(IMAGE_SIZE * scale),
# min_width=int(IMAGE_SIZE * scale),
# border_mode=cv2.BORDER_CONSTANT,
# ),
# A.Rotate(limit=10, interpolation=1, border_mode=4),
# A.RandomCrop(width=IMAGE_SIZE, height=IMAGE_SIZE),
# A.ColorJitter(brightness=0.6, contrast=0.6, saturation=0.6, hue=0.6, p=0.4),
# A.OneOf(
# [
# A.ShiftScaleRotate(
# rotate_limit=20, p=0.5, border_mode=cv2.BORDER_CONSTANT
# ),
# # A.Affine(shear=15, p=0.5, mode="constant"),
# ],
# p=1.0,
# ),
# A.HorizontalFlip(p=0.5),
# A.Blur(p=0.1),
# A.CLAHE(p=0.1),
# A.Posterize(p=0.1),
# A.ToGray(p=0.1),
# A.ChannelShuffle(p=0.05),
# A.Normalize(
# mean=[0, 0, 0],
# std=[1, 1, 1],
# max_pixel_value=255,
# ),
# ToTensorV2(),
# ],
# bbox_params=A.BboxParams(
# format="yolo",
# min_visibility=0.4,
# label_fields=[],
# ),
# )
test_transforms = A.Compose(
[
A.LongestMaxSize(max_size=IMAGE_SIZE),
A.PadIfNeeded(
min_height=IMAGE_SIZE, min_width=IMAGE_SIZE, border_mode=cv2.BORDER_CONSTANT
),
A.Normalize(
mean=[0, 0, 0],
std=[1, 1, 1],
max_pixel_value=255,
),
ToTensorV2(),
],
bbox_params=A.BboxParams(format="yolo", min_visibility=0.4, label_fields=[]),
)
resize_transforms = A.Compose(
[
A.LongestMaxSize(max_size=IMAGE_SIZE),
A.PadIfNeeded(
min_height=IMAGE_SIZE, min_width=IMAGE_SIZE, border_mode=cv2.BORDER_CONSTANT
),
]
)