Spaces:
Sleeping
Sleeping
File size: 9,588 Bytes
58c979f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import pytorch_lightning as pl
import seaborn as sns
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchmetrics
from torch.optim.lr_scheduler import OneCycleLR
from torch_lr_finder import LRFinder
from . import config # Custom config file
from .visualize import plot_incorrect_preds
class Net(pl.LightningModule):
def __init__(
self,
num_classes=10,
dropout_percentage=0,
norm='bn',
num_groups=2,
criterion=F.cross_entropy,
learning_rate=0.001,
weight_decay=0.0
):
super(Net, self).__init__()
# Define norm
if norm == 'bn':
self.norm = nn.BatchNorm2d
elif norm == 'gn':
self.norm = lambda in_dim: nn.GroupNorm(
num_groups=num_groups, num_channels=in_dim
)
elif norm == 'ln':
self.norm = lambda in_dim: nn.GroupNorm(
num_groups=in_dim, num_channels=in_dim
)
#define loss
self.criterion = criterion
#define metrics
self.accuracy = torchmetrics.Accuracy(
task='multiclass', num_classes=num_classes
)
self.confusion_matrix = torchmetrics.ConfusionMatrix(
task='multiclass', num_classes=num_classes
)
#define the optimizer hyperparameters
self.learning_rate = learning_rate
self.weight_decay = weight_decay
#prediction storage
self.pred_store = {
"test_preds": torch.tensor([]),
"test_labels": torch.tensor([]),
"test_incorrect": [] #?
}
self.log_store = { # not used at all
"train_loss_epoch": [],
"train_acc_epoch": [],
"val_loss_epoch": [],
"val_acc_epoch": [],
"test_loss_epoch": [], # not used
"test_acc_epoch": [], # not used
}
# Define the network architecture
self.prep_layer = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, padding=1), # 32x32x3 | 1 -> 32x32x64 | 3
self.norm(64),
nn.ReLU(),
nn.Dropout(dropout_percentage),
)
self.l1 = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=3, padding=1), # 32x32x128 | 5
nn.MaxPool2d(2, 2), # 16x16x128 | 6
self.norm(128),
nn.ReLU(),
nn.Dropout(dropout_percentage),
)
self.l1res = nn.Sequential(
nn.Conv2d(128, 128, kernel_size=3, padding=1), # 16x16x128 | 10
self.norm(128),
nn.ReLU(),
nn.Dropout(dropout_percentage),
nn.Conv2d(128, 128, kernel_size=3, padding=1), # 16x16x128 | 14
self.norm(128),
nn.ReLU(),
nn.Dropout(dropout_percentage),
)
self.l2 = nn.Sequential(
nn.Conv2d(128, 256, kernel_size=3, padding=1), # 16x16x256 | 18
nn.MaxPool2d(2, 2), # 8x8x256 | 19
self.norm(256),
nn.ReLU(),
nn.Dropout(dropout_percentage),
)
self.l3 = nn.Sequential(
nn.Conv2d(256, 512, kernel_size=3, padding=1), # 8x8x512 | 27
nn.MaxPool2d(2, 2), # 4x4x512 | 28
self.norm(512),
nn.ReLU(),
nn.Dropout(dropout_percentage),
)
self.l3res = nn.Sequential(
nn.Conv2d(512, 512, kernel_size=3, padding=1), # 4x4x512 | 36
self.norm(512),
nn.ReLU(),
nn.Dropout(dropout_percentage),
nn.Conv2d(512, 512, kernel_size=3, padding=1), # 4x4x512 | 44
self.norm(512),
nn.ReLU(),
nn.Dropout(dropout_percentage),
)
self.maxpool = nn.MaxPool2d(4, 4)
# Classifier
self.linear = nn.Linear(512, 10)
def forward(self, x):
x = self.prep_layer(x)
x = self.l1(x)
x = x + self.l1res(x)
x = self.l2(x)
x = self.l3(x)
x = x + self.l3res(x)
x = self.maxpool(x)
x = x.view(-1, 512)
x = self.linear(x)
return F.log_softmax(x, dim=1)
def training_step(self, batch, batch_idx):
data, target = batch
#forward pass
pred = self.forward(data)
#calculate loss
loss = self.criterion(pred, target)
#calculate accuracy
accuracy = self.accuracy(pred, target)
#log metrics
self.log_dict(
{"train_loss": loss, "train_acc": accuracy},
on_step=True,
on_epoch=True,
prog_bar=True,
logger=True,
)
return loss
def validation_step(self, batch, batch_idx):
data, target = batch
#forward pass
pred = self.forward(data)
#calculate loss
loss = self.criterion(pred, target)
#calculate accuracy
accuracy = self.accuracy(pred, target)
#log metrics
self.log_dict(
{"val_loss": loss, "val_acc": accuracy},
on_step=True,
on_epoch=True,
prog_bar=True,
logger=True,
)
return loss
def test_step(self, batch, batch_idx):
data, target = batch
#forward pass
pred = self.forward(data)
argmax_pred = pred.argmax(dim=1).cpu() # why cpu here when down
#calculate loss
loss = self.criterion(pred, target)
#calculate accuracy
accuracy = self.accuracy(pred, target)
#update confusion matrix
self.confusion_matrix.update(pred, target)
#log metrics
self.log_dict(
{"test_loss": loss, "test_acc": accuracy},
on_step=True,
on_epoch=True,
prog_bar=True,
logger=True,
)
#store the predictions. labels and incorrect predictions
#converting to cpu
data, target, pred, argmax_pred = data.cpu(), target.cpu(), pred.cpu(), argmax_pred.cpu()
#storing the predictions
self.pred_store["test_preds"] = torch.cat((self.pred_store["test_preds"], argmax_pred), dim=0)
self.pred_store["test_labels"] = torch.cat((self.pred_store["test_labels"], target), dim=0)
for d, t, p, o in zip(data, target, argmax_pred, pred):
if p.eq(t.view_as(p)).item() == False:
self.pred_store["test_incorrect"].append(
(d.cpu(), t, p, o[p.item()].cpu())
)
return loss
def find_bestLR_LRFinder(self, optimizer):
lr_finder = LRFinder(self, optimizer, criterian = self.criterion)
lr_finder.range_test(
self.trainer.datamodule.train_dataloader(),
end_lr=config.LRFINDER_END_LR,
num_iter=config.LRFINDER_NUM_ITERATIONS,
step_mode=config.LRFINDER_STEP_MODE
)
# best_lr = None
# Extract the loss and learning rate from history
loss = np.array(lr_finder.history['loss'])
lr = np.array(lr_finder.history['lr'])
# Find the learning rate with steepest negative gradient
gradient = np.gradient(loss)
idx = np.argmin(gradient)
best_lr = lr[idx]
try:
_, y = lr_finder.plot()
except Exception as e:
pass
print("BEST_LR: ", best_lr)
lr_finder.reset()
return best_lr
def configure_optimizers(self):
optimizer = self.get_only_optimizer()
best_lr = self.find_bestLR_LRFinder(optimizer)
scheduler = OneCycleLR(
optimizer,
max_lr=best_lr, #used best_lr insted of hard coded values
steps_per_epoch=len(self.trainer.datamodule.train_dataloader()),
epochs=config.NUM_EPOCHS,
pct_start=5 / config.NUM_EPOCHS,
div_factor=config.OCLR_DIV_FACTOR,
three_phase=config.OCLR_THREE_PHASE,
final_div_factor=config.OCLR_FINAL_DIV_FACTOR,
anneal_strategy=config.OCLR_ANNEAL_STRATEGY
)
return [optimizer], [{"scheduler": scheduler, "interval": "step", "frequency": 1}]
def get_only_optimizer(self):
optimizer = optim.Adam(
self.parameters(),lr=self.learning_rate, weight_decay=self.weight_decay
)
return optimizer
def on_test_end(self) -> None:
super().on_test_end()
#Confusion Matrix
confmat = self.confusion_matrix.cpu().compute().numpy()
if config.NORM_CONF_MAT:
df_confmat = pd.DataFrame(
confmat / np.sum(confmat, axis=1)[:, None],
index=[i for i in config.CLASSES],
columns=[i for i in config.CLASSES],
)
else:
df_confmat = pd.DataFrame(
confmat,
index=[i for i in config.CLASSES],
columns=[i for i in config.CLASSES],
)
plt.figure(figsize=(7, 5))
sns.heatmap(df_confmat, annot=True, cmap="Blues", fmt=".3f", linewidths=0.5)
plt.tight_layout()
plt.ylabel("True label")
plt.xlabel("Predicted label")
plt.show()
def plot_incorrect_predictions_helper(self, num_imgs=10):
plot_incorrect_preds(
self.pred_store["test_incorrect"], config.CLASSES, num_imgs
) |