Spaces:
Sleeping
Sleeping
File size: 10,318 Bytes
b7bb8ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
from typing import Optional
# langchain imports
from langchain.chat_models import ChatOpenAI
from langchain.schema.runnable import RunnableMap
from langchain.prompts.prompt import PromptTemplate
from langchain.prompts import ChatPromptTemplate
from langchain.schema.runnable import RunnablePassthrough
from langchain.schema.output_parser import StrOutputParser
from operator import itemgetter
from langchain.schema.messages import HumanMessage, SystemMessage, AIMessage
from langchain.callbacks.streamlit.streamlit_callback_handler import StreamlitCallbackHandler
def format_docs(docs):
res = ""
# res = str(docs)
for doc in docs:
escaped_page_content = doc.page_content.replace("\n", "\\n")
res += "<doc>\n"
res += f" <content>{escaped_page_content}</content>\n"
for m in doc.metadata:
res += f" <{m}>{doc.metadata[m]}</{m}>\n"
res += "</doc>\n"
return res
def get_search_index(file_name="Mahmoudi_Nima_202202_PhD.pdf", index_folder="index"):
# load embeddings
from langchain.vectorstores import FAISS
from langchain.embeddings.openai import OpenAIEmbeddings
search_index = FAISS.load_local(
folder_path=index_folder,
index_name=file_name + ".index",
embeddings=OpenAIEmbeddings(),
)
return search_index
def convert_message(m):
if m["role"] == "user":
return HumanMessage(content=m["content"])
elif m["role"] == "assistant":
return AIMessage(content=m["content"])
elif m["role"] == "system":
return SystemMessage(content=m["content"])
else:
raise ValueError(f"Unknown role {m['role']}")
_condense_template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question, in its original language.
Chat History:
{chat_history}
Follow Up Input: {input}
Standalone question:"""
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_condense_template)
_rag_template = """Answer the question based only on the following context, citing the page number(s) of the document(s) you used to answer the question:
{context}
Question: {question}
"""
ANSWER_PROMPT = ChatPromptTemplate.from_template(_rag_template)
def _format_chat_history(chat_history):
def format_single_chat_message(m):
if type(m) is HumanMessage:
return "Human: " + m.content
elif type(m) is AIMessage:
return "Assistant: " + m.content
elif type(m) is SystemMessage:
return "System: " + m.content
else:
raise ValueError(f"Unknown role {m['role']}")
return "\n".join([format_single_chat_message(m) for m in chat_history])
def get_standalone_question_from_chat_history_chain():
_inputs = RunnableMap(
standalone_question=RunnablePassthrough.assign(
chat_history=lambda x: _format_chat_history(x["chat_history"])
)
| CONDENSE_QUESTION_PROMPT
| ChatOpenAI(temperature=0)
| StrOutputParser(),
)
return _inputs
def get_rag_chain(file_name, index_folder="index", retrieval_cb=None):
vectorstore = get_search_index(file_name, index_folder)
retriever = vectorstore.as_retriever()
if retrieval_cb is None:
retrieval_cb = lambda x: x
def context_update_fn(q):
retrieval_cb([q])
return q
_inputs = RunnableMap(
standalone_question=RunnablePassthrough.assign(
chat_history=lambda x: _format_chat_history(x["chat_history"])
)
| CONDENSE_QUESTION_PROMPT
| ChatOpenAI(temperature=0)
| StrOutputParser(),
)
_context = {
"context": itemgetter("standalone_question") | RunnablePassthrough(context_update_fn) | retriever | format_docs,
"question": lambda x: x["standalone_question"],
}
conversational_qa_chain = _inputs | _context | ANSWER_PROMPT | ChatOpenAI()
return conversational_qa_chain
# RAG fusion chain
# source1: https://youtu.be/GchC5WxeXGc?si=6i7J0rPZI7SNwFYZ
# source2: https://towardsdatascience.com/forget-rag-the-future-is-rag-fusion-1147298d8ad1
def reciprocal_rank_fusion(results: list[list], k=60):
from langchain.load import dumps, loads
fused_scores = {}
for docs in results:
# Assumes the docs are returned in sorted order of relevance
for rank, doc in enumerate(docs):
doc_str = dumps(doc)
if doc_str not in fused_scores:
fused_scores[doc_str] = 0
fused_scores[doc_str] += 1 / (rank + k)
reranked_results = [
(loads(doc), score)
for doc, score in sorted(fused_scores.items(), key=lambda x: x[1], reverse=True)
]
return reranked_results
def get_search_query_generation_chain():
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate
prompt = ChatPromptTemplate(
input_variables=['original_query'],
messages=[
SystemMessagePromptTemplate(
prompt=PromptTemplate(
input_variables=[],
template='You are a helpful assistant that generates multiple search queries based on a single input query.'
)
),
HumanMessagePromptTemplate(
prompt=PromptTemplate(
input_variables=['original_query'],
template='Generate multiple search queries related to: {original_query} \n OUTPUT (4 queries):'
)
)
]
)
generate_queries = (
prompt |
ChatOpenAI(temperature=0) |
StrOutputParser() |
(lambda x: x.split("\n"))
)
return generate_queries
def get_rag_fusion_chain(file_name, index_folder="index", retrieval_cb=None):
vectorstore = get_search_index(file_name, index_folder)
retriever = vectorstore.as_retriever()
query_generation_chain = get_search_query_generation_chain()
_inputs = RunnableMap(
standalone_question=RunnablePassthrough.assign(
chat_history=lambda x: _format_chat_history(x["chat_history"])
)
| CONDENSE_QUESTION_PROMPT
| ChatOpenAI(temperature=0)
| StrOutputParser(),
)
if retrieval_cb is None:
retrieval_cb = lambda x: x
_context = {
"context":
RunnablePassthrough.assign(
original_query=lambda x: x["standalone_question"]
)
| query_generation_chain
| retrieval_cb
| retriever.map()
| reciprocal_rank_fusion
| (lambda x: [item[0] for item in x])
| format_docs,
"question": lambda x: x["standalone_question"],
}
conversational_qa_chain = _inputs | _context | ANSWER_PROMPT | ChatOpenAI()
return conversational_qa_chain
####################
# Adding agent chain with OpenAI function calling
def get_search_tool_from_index(search_index, st_cb: Optional[StreamlitCallbackHandler] = None, ):
from langchain.agents import tool
from agent_helper import retry_and_streamlit_callback
@tool
@retry_and_streamlit_callback(st_cb=st_cb, tool_name="Content Seach Tool")
def search(query: str) -> str:
"""Search the contents of the source document for the queries."""
docs = search_index.similarity_search(query, k=5)
return format_docs(docs)
return search
def get_lc_oai_tools(file_name:str = "Mahmoudi_Nima_202202_PhD.pdf", index_folder: str = "index", st_cb: Optional[StreamlitCallbackHandler] = None, ):
from langchain.tools.render import format_tool_to_openai_tool
search_index = get_search_index(file_name, index_folder)
lc_tools = [get_search_tool_from_index(search_index=search_index, st_cb=st_cb)]
oai_tools = [format_tool_to_openai_tool(t) for t in lc_tools]
return lc_tools, oai_tools
def get_agent_chain(file_name="Mahmoudi_Nima_202202_PhD.pdf", index_folder="index", callbacks=None, st_cb: Optional[StreamlitCallbackHandler] = None, ):
if callbacks is None:
callbacks = []
from langchain.agents import initialize_agent, AgentType
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.agents.format_scratchpad.openai_tools import (
format_to_openai_tool_messages,
)
from langchain.agents import AgentExecutor
from langchain.agents.output_parsers.openai_tools import OpenAIToolsAgentOutputParser
lc_tools, oai_tools = get_lc_oai_tools(file_name, index_folder, st_cb)
prompt = ChatPromptTemplate.from_messages(
[
("system", "You are a helpful assistant, use the search tool to answer the user's question and cite only the page number when you use information coming (like [p1]) from the source document.\nchat history: {chat_history}"),
("user", "{input}"),
MessagesPlaceholder(variable_name="agent_scratchpad"),
]
)
llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-1106")
agent = (
{
"input": lambda x: x["input"],
"agent_scratchpad": lambda x: format_to_openai_tool_messages(
x["intermediate_steps"]
),
"chat_history": lambda x: _format_chat_history(x["chat_history"]),
}
| prompt
| llm.bind(tools=oai_tools)
| OpenAIToolsAgentOutputParser()
)
agent_executor = AgentExecutor(agent=agent, tools=lc_tools, verbose=True, callbacks=callbacks)
return agent_executor
if __name__ == "__main__":
question_generation_chain = get_search_query_generation_chain()
print('='*50)
print('RAG Chain')
chain = get_rag_chain()
print(chain.invoke({'input': 'serverless computing', 'chat_history': []}))
print('='*50)
print('Question Generation Chain')
print(question_generation_chain.invoke({'original_query': 'serverless computing'}))
print('-'*50)
print('RAG Fusion Chain')
chain = get_rag_fusion_chain()
print(chain.invoke({'input': 'serverless computing', 'chat_history': []}))
agent_executor = get_agent_chain()
print(
agent_executor.invoke({
"input": "based on the source document, compare FaaS with BaaS??",
"chat_history": [],
})
)
|