Spaces:
Runtime error
Runtime error
Use gradio for document answering
Browse files- .gitignore +1 -0
- app.py +130 -3
- llm_model.py +96 -0
- requirements.txt +12 -0
- streamlit_app.py +158 -0
- vector_db.py +46 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.idea
|
app.py
CHANGED
@@ -1,4 +1,131 @@
|
|
1 |
-
import
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from langchain.docstore.document import Document
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter, Language
|
4 |
|
5 |
+
import vector_db as vdb
|
6 |
+
from llm_model import LLMModel
|
7 |
+
|
8 |
+
chunk_size = 2000
|
9 |
+
chunk_overlap = 200
|
10 |
+
uploaded_docs = []
|
11 |
+
uploaded_df = gr.Dataframe(headers=["file_name", "content_length"])
|
12 |
+
upload_files_section = gr.Files(
|
13 |
+
file_types=[".md", ".mdx", ".rst", ".txt"],
|
14 |
+
)
|
15 |
+
chatbot_stream = gr.Chatbot(bubble_full_width=False, show_copy_button=True)
|
16 |
+
|
17 |
+
|
18 |
+
def load_docs(files):
|
19 |
+
all_docs = []
|
20 |
+
all_qa = []
|
21 |
+
for file in files:
|
22 |
+
if file.name is not None:
|
23 |
+
with open(file.name, "r") as f:
|
24 |
+
file_content = f.read()
|
25 |
+
file_name = file.name.split("/")[-1]
|
26 |
+
# Create document with metadata
|
27 |
+
doc = Document(page_content=file_content, metadata={"source": file_name})
|
28 |
+
# Create an instance of the RecursiveCharacterTextSplitter class with specific parameters.
|
29 |
+
# It splits text into chunks of 1000 characters each with a 150-character overlap.
|
30 |
+
language = get_language(file_name)
|
31 |
+
text_splitter = RecursiveCharacterTextSplitter.from_language(
|
32 |
+
chunk_size=chunk_size,
|
33 |
+
chunk_overlap=chunk_overlap,
|
34 |
+
language=language
|
35 |
+
)
|
36 |
+
# Split the text into chunks using the text splitter.
|
37 |
+
doc_chunks = text_splitter.split_documents([doc])
|
38 |
+
print(f"Number of chunks: {len(doc_chunks)}")
|
39 |
+
# Foreach chunk, send to LLM to get potential questions and answers
|
40 |
+
for doc_chunk in doc_chunks:
|
41 |
+
gr.Info("Analysing document...")
|
42 |
+
potential_qa_from_doc = llm_model.get_potential_question_answer(doc_chunk.page_content)
|
43 |
+
all_qa += [Document(page_content=potential_qa_from_doc, metadata=doc_chunk.metadata)]
|
44 |
+
all_docs += doc_chunks
|
45 |
+
uploaded_docs.append(file.name)
|
46 |
+
vector_db.load_docs_into_vector_db(all_qa)
|
47 |
+
gr.Info("Loaded document(s) into vector db.")
|
48 |
+
|
49 |
+
return uploaded_docs
|
50 |
+
|
51 |
+
|
52 |
+
def get_language(file_name: str):
|
53 |
+
if file_name.endswith(".md") or file_name.endswith(".mdx"):
|
54 |
+
return Language.MARKDOWN
|
55 |
+
elif file_name.endswith(".rst"):
|
56 |
+
return Language.RST
|
57 |
+
else:
|
58 |
+
return Language.MARKDOWN
|
59 |
+
|
60 |
+
|
61 |
+
def get_vector_db():
|
62 |
+
return vdb.VectorDB()
|
63 |
+
|
64 |
+
|
65 |
+
def get_llm_model(_db: vdb.VectorDB):
|
66 |
+
retriever = _db.docs_db.as_retriever(search_kwargs={"k": 2})
|
67 |
+
# return LLMModel(retriever=retriever).create_qa_chain()
|
68 |
+
return LLMModel(retriever=retriever)
|
69 |
+
|
70 |
+
|
71 |
+
def predict(message, history):
|
72 |
+
# resp = llm_model.answer_question_inference(message)
|
73 |
+
# return resp.get("answer")
|
74 |
+
resp = llm_model.answer_question_inference_text_gen(message)
|
75 |
+
final_resp = ""
|
76 |
+
for c in resp:
|
77 |
+
final_resp += str(c)
|
78 |
+
yield final_resp
|
79 |
+
# start_time = time.time()
|
80 |
+
# res = llm_model({"query": message})
|
81 |
+
# sources = []
|
82 |
+
# for source_docs in res['source_documents']:
|
83 |
+
# if 'source' in source_docs.metadata:
|
84 |
+
# sources.append(source_docs.metadata['source'])
|
85 |
+
# # Display assistant response in chat message container
|
86 |
+
# end_time = time.time()
|
87 |
+
# time_taken = "{:.2f}".format(end_time - start_time)
|
88 |
+
# format_answer = f"## Result\n\n{res['result']}\n\n### Sources\n\n{sources}\n\nTime taken: {time_taken}s"
|
89 |
+
# format_source = None
|
90 |
+
# for source_docs in res['source_documents']:
|
91 |
+
# if 'source' in source_docs.metadata:
|
92 |
+
# format_source = f"## File: {source_docs.metadata['source']}\n\n{source_docs.page_content}"
|
93 |
+
#
|
94 |
+
# return format_answer
|
95 |
+
|
96 |
+
|
97 |
+
def vote(data: gr.LikeData):
|
98 |
+
if data.liked:
|
99 |
+
gr.Info("You upvoted this response 😊", )
|
100 |
+
else:
|
101 |
+
gr.Warning("You downvoted this response 👀")
|
102 |
+
|
103 |
+
|
104 |
+
vector_db = get_vector_db()
|
105 |
+
llm_model = get_llm_model(vector_db)
|
106 |
+
|
107 |
+
chat_interface_stream = gr.ChatInterface(
|
108 |
+
predict,
|
109 |
+
title="👀 Document answering bot",
|
110 |
+
description="📚🔦 Upload some documents on the side and ask questions!",
|
111 |
+
textbox=gr.Textbox(container=False, scale=7),
|
112 |
+
chatbot=chatbot_stream,
|
113 |
+
examples=["What is Data Caterer?", "Provide a set of potential questions and answers about the README"]
|
114 |
+
)
|
115 |
+
|
116 |
+
with gr.Blocks() as blocks:
|
117 |
+
with gr.Row():
|
118 |
+
with gr.Column(scale=1, min_width=100) as upload_col:
|
119 |
+
gr.Interface(
|
120 |
+
load_docs,
|
121 |
+
title="📖 Upload documents",
|
122 |
+
inputs=upload_files_section,
|
123 |
+
outputs=gr.Files(),
|
124 |
+
allow_flagging="never"
|
125 |
+
)
|
126 |
+
# upload_files_section.upload(load_docs, inputs=upload_files_section)
|
127 |
+
with gr.Column(scale=4, min_width=600) as chat_col:
|
128 |
+
chatbot_stream.like(vote, None, None)
|
129 |
+
chat_interface_stream.render()
|
130 |
+
|
131 |
+
blocks.queue().launch()
|
llm_model.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import requests
|
4 |
+
from huggingface_hub import InferenceClient
|
5 |
+
from langchain.chains import RetrievalQA
|
6 |
+
from langchain.prompts import PromptTemplate
|
7 |
+
from langchain_community.llms import CTransformers
|
8 |
+
from langchain_core.vectorstores import VectorStoreRetriever
|
9 |
+
|
10 |
+
|
11 |
+
class LLMModel:
|
12 |
+
base_model = "TheBloke/Llama-2-7B-GGUF"
|
13 |
+
specific_model = "llama-2-7b.Q4_K_M.gguf"
|
14 |
+
token_model = "meta-llama/Llama-2-7b-hf"
|
15 |
+
llm_config = {'context_length': 2048, 'max_new_tokens': 1024, 'temperature': 0.3, 'top_p': 1.0}
|
16 |
+
|
17 |
+
question_answer_system_prompt = """You are a helpful question answer assistant. Given the following context and a question, provide a set of potential questions and answers.
|
18 |
+
Keep answers brief and well-structured. Do not give one word answers."""
|
19 |
+
final_assistant_system_prompt = """You are a helpful assistant. Given the following list of relevant questions and answers, generate an answer based on this list only.
|
20 |
+
Keep answers brief and well-structured. Do not give one word answers.
|
21 |
+
If the answer is not found in the list, kindly state "I don't know.". Don't try to make up an answer."""
|
22 |
+
template = """<s>[INST] <<SYS>>
|
23 |
+
You are a question answer assistant. Given the following context and a question, generate an answer based on this context only.
|
24 |
+
Keep answers brief and well-structured. Do not give one word answers.
|
25 |
+
If the answer is not found in the context, kindly state "I don't know.". Don't try to make up an answer.
|
26 |
+
<</SYS>>
|
27 |
+
|
28 |
+
Context: {context}
|
29 |
+
|
30 |
+
Question: Give me a step by step explanation of {question}[/INST]
|
31 |
+
Answer:"""
|
32 |
+
qa_chain_prompt = PromptTemplate.from_template(template)
|
33 |
+
retriever = None
|
34 |
+
|
35 |
+
hf_token = os.getenv('HF_TOKEN')
|
36 |
+
api_url = os.getenv('API_URL')
|
37 |
+
headers = {"Authorization": f"Bearer {hf_token}"}
|
38 |
+
client = InferenceClient(api_url)
|
39 |
+
|
40 |
+
# llm = CTransformers(model=base_model, model_file=specific_model, config=llm_config, hf=True)
|
41 |
+
llm = None
|
42 |
+
|
43 |
+
def __init__(self, retriever: VectorStoreRetriever):
|
44 |
+
self.retriever = retriever
|
45 |
+
|
46 |
+
def create_qa_chain(self):
|
47 |
+
return RetrievalQA.from_chain_type(
|
48 |
+
llm=self.llm,
|
49 |
+
chain_type="stuff",
|
50 |
+
retriever=self.retriever,
|
51 |
+
return_source_documents=True,
|
52 |
+
chain_type_kwargs={"prompt": self.qa_chain_prompt},
|
53 |
+
)
|
54 |
+
|
55 |
+
def format_retrieved_docs(self, docs):
|
56 |
+
all_docs = []
|
57 |
+
for doc in docs:
|
58 |
+
if "source" in doc.metadata:
|
59 |
+
all_docs.append(f"""Document: {doc.metadata['source']}\nContent: {doc.page_content}\n\n""")
|
60 |
+
return all_docs
|
61 |
+
|
62 |
+
def format_query(self, question, context, system_prompt):
|
63 |
+
prompt = f"""[INST] {system_prompt}
|
64 |
+
|
65 |
+
Context: {context}
|
66 |
+
|
67 |
+
Question: Give me a step by step explanation of {question}[/INST]"""
|
68 |
+
return prompt
|
69 |
+
|
70 |
+
def format_question(self, question):
|
71 |
+
relevant_docs = self.retriever.get_relevant_documents(question)
|
72 |
+
formatted_docs = self.format_retrieved_docs(relevant_docs)
|
73 |
+
return self.format_query(question, formatted_docs, self.final_assistant_system_prompt)
|
74 |
+
|
75 |
+
def get_potential_question_answer(self, document_chunk: str):
|
76 |
+
prompt = self.format_query("potential questions and answers.", document_chunk, self.question_answer_system_prompt)
|
77 |
+
return self.client.text_generation(prompt, max_new_tokens=512, temperature=0.4)
|
78 |
+
|
79 |
+
def answer_question_inference_text_gen(self, question):
|
80 |
+
prompt = self.format_question(question)
|
81 |
+
return self.client.text_generation(prompt, max_new_tokens=512, temperature=0.4)
|
82 |
+
|
83 |
+
def answer_question_inference(self, question):
|
84 |
+
relevant_docs = self.retriever.get_relevant_documents(question)
|
85 |
+
formatted_docs = "".join(self.format_retrieved_docs(relevant_docs))
|
86 |
+
if not formatted_docs:
|
87 |
+
return "No uploaded documents. Please try upload a document on the left side."
|
88 |
+
else:
|
89 |
+
print(formatted_docs)
|
90 |
+
return self.client.question_answering(question=question, context=formatted_docs)
|
91 |
+
|
92 |
+
def answer_question_api(self, question):
|
93 |
+
formatted_prompt = self.format_question(question)
|
94 |
+
resp = requests.post(self.api_url, headers=self.headers, json={"inputs": formatted_prompt}, stream=True)
|
95 |
+
for c in resp.iter_content():
|
96 |
+
yield c
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
tiktoken
|
2 |
+
faiss-cpu
|
3 |
+
ctransformers
|
4 |
+
transformers
|
5 |
+
sentence-transformers
|
6 |
+
streamlit
|
7 |
+
streamlit_lottie
|
8 |
+
gradio
|
9 |
+
huggingface_hub
|
10 |
+
langchain
|
11 |
+
langchain_experimental
|
12 |
+
llama-cpp-python
|
streamlit_app.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from io import StringIO
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
from langchain.docstore.document import Document
|
5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter, Language
|
6 |
+
import time
|
7 |
+
|
8 |
+
import vector_db as vdb
|
9 |
+
from llm_model import LLMModel
|
10 |
+
|
11 |
+
|
12 |
+
def default_state():
|
13 |
+
if "startup" not in st.session_state:
|
14 |
+
st.session_state.startup = True
|
15 |
+
|
16 |
+
if "messages" not in st.session_state:
|
17 |
+
st.session_state.messages = []
|
18 |
+
|
19 |
+
if "uploaded_docs" not in st.session_state:
|
20 |
+
st.session_state.uploaded_docs = []
|
21 |
+
|
22 |
+
if "llm_option" not in st.session_state:
|
23 |
+
st.session_state.llm_option = "Local"
|
24 |
+
|
25 |
+
if "answer_loading" not in st.session_state:
|
26 |
+
st.session_state.answer_loading = False
|
27 |
+
|
28 |
+
|
29 |
+
def load_doc(file_name: str, file_content: str):
|
30 |
+
if file_name is not None:
|
31 |
+
# Create document with metadata
|
32 |
+
doc = Document(page_content=file_content, metadata={"source": file_name})
|
33 |
+
# Create an instance of the RecursiveCharacterTextSplitter class with specific parameters.
|
34 |
+
# It splits text into chunks of 1000 characters each with a 150-character overlap.
|
35 |
+
language = get_language(file_name)
|
36 |
+
text_splitter = RecursiveCharacterTextSplitter.from_language(chunk_size=1000, chunk_overlap=150,
|
37 |
+
language=language)
|
38 |
+
# Split the text into chunks using the text splitter.
|
39 |
+
docs = text_splitter.split_documents([doc])
|
40 |
+
return docs
|
41 |
+
else:
|
42 |
+
return None
|
43 |
+
|
44 |
+
|
45 |
+
def get_language(file_name: str):
|
46 |
+
if file_name.endswith(".md") or file_name.endswith(".mdx"):
|
47 |
+
return Language.MARKDOWN
|
48 |
+
elif file_name.endswith(".rst"):
|
49 |
+
return Language.RST
|
50 |
+
else:
|
51 |
+
return Language.MARKDOWN
|
52 |
+
|
53 |
+
|
54 |
+
@st.cache_resource()
|
55 |
+
def get_vector_db():
|
56 |
+
return vdb.VectorDB()
|
57 |
+
|
58 |
+
|
59 |
+
@st.cache_resource()
|
60 |
+
def get_llm_model(_db: vdb.VectorDB):
|
61 |
+
retriever = _db.docs_db.as_retriever(search_kwargs={"k": 2})
|
62 |
+
return LLMModel(retriever=retriever).create_qa_chain()
|
63 |
+
|
64 |
+
|
65 |
+
# Initialize an instance of the RetrievalQA class with the specified parameters
|
66 |
+
def init_sidebar():
|
67 |
+
with st.sidebar:
|
68 |
+
st.toggle(
|
69 |
+
"Loading from LLM",
|
70 |
+
on_change=enable_sidebar(),
|
71 |
+
disabled=not st.session_state.answer_loading
|
72 |
+
)
|
73 |
+
llm_option = st.selectbox(
|
74 |
+
'Select to use local model or inference API',
|
75 |
+
options=['Local', 'Inference API']
|
76 |
+
)
|
77 |
+
st.session_state.llm_option = llm_option
|
78 |
+
uploaded_files = st.file_uploader(
|
79 |
+
'Upload file(s)',
|
80 |
+
type=['md', 'mdx', 'rst', 'txt'],
|
81 |
+
accept_multiple_files=True
|
82 |
+
)
|
83 |
+
for uploaded_file in uploaded_files:
|
84 |
+
if uploaded_file.name not in st.session_state.uploaded_docs:
|
85 |
+
# Read the file as a string
|
86 |
+
stringio = StringIO(uploaded_file.getvalue().decode("utf-8"))
|
87 |
+
string_data = stringio.read()
|
88 |
+
# Get chunks of text
|
89 |
+
doc_chunks = load_doc(uploaded_file.name, string_data)
|
90 |
+
st.write(f"Number of chunks={len(doc_chunks)}")
|
91 |
+
vector_db.load_docs_into_vector_db(doc_chunks)
|
92 |
+
st.session_state.uploaded_docs.append(uploaded_file.name)
|
93 |
+
|
94 |
+
|
95 |
+
def init_chat():
|
96 |
+
# Display chat messages from history on app rerun
|
97 |
+
for message in st.session_state.messages:
|
98 |
+
with st.chat_message(message["role"]):
|
99 |
+
st.markdown(message["content"])
|
100 |
+
|
101 |
+
|
102 |
+
def disable_sidebar():
|
103 |
+
st.session_state.answer_loading = True
|
104 |
+
st.rerun()
|
105 |
+
|
106 |
+
|
107 |
+
def enable_sidebar():
|
108 |
+
st.session_state.answer_loading = False
|
109 |
+
|
110 |
+
|
111 |
+
st.set_page_config(page_title="Document Answering Tool", page_icon=":book:")
|
112 |
+
vector_db = get_vector_db()
|
113 |
+
default_state()
|
114 |
+
init_sidebar()
|
115 |
+
st.header("Document answering tool")
|
116 |
+
st.subheader("Upload your documents on the side and ask questions")
|
117 |
+
init_chat()
|
118 |
+
llm_model = get_llm_model(vector_db)
|
119 |
+
st.session_state.startup = False
|
120 |
+
|
121 |
+
|
122 |
+
# React to user input
|
123 |
+
if user_prompt := st.chat_input("What's up?", on_submit=disable_sidebar()):
|
124 |
+
# if st.session_state.answer_loading:
|
125 |
+
# st.warning("Cannot ask multiple questions at the same time")
|
126 |
+
# st.session_state.answer_loading = False
|
127 |
+
# else:
|
128 |
+
start_time = time.time()
|
129 |
+
# Display user message in chat message container
|
130 |
+
with st.chat_message("user"):
|
131 |
+
st.markdown(user_prompt)
|
132 |
+
# Add user message to chat history
|
133 |
+
st.session_state.messages.append({"role": "user", "content": user_prompt})
|
134 |
+
|
135 |
+
if llm_model is not None:
|
136 |
+
assistant_chat = st.chat_message("assistant")
|
137 |
+
if not st.session_state.uploaded_docs:
|
138 |
+
assistant_chat.warning("WARN: Will try answer question without documents")
|
139 |
+
with st.spinner('Resolving question...'):
|
140 |
+
res = llm_model({"query": user_prompt})
|
141 |
+
sources = []
|
142 |
+
for source_docs in res['source_documents']:
|
143 |
+
if 'source' in source_docs.metadata:
|
144 |
+
sources.append(source_docs.metadata['source'])
|
145 |
+
# Display assistant response in chat message container
|
146 |
+
end_time = time.time()
|
147 |
+
time_taken = "{:.2f}".format(end_time - start_time)
|
148 |
+
format_answer = f"## Result\n\n{res['result']}\n\n### Sources\n\n{sources}\n\nTime taken: {time_taken}s"
|
149 |
+
assistant_chat.markdown(format_answer)
|
150 |
+
source_expander = assistant_chat.expander("See full sources")
|
151 |
+
for source_docs in res['source_documents']:
|
152 |
+
if 'source' in source_docs.metadata:
|
153 |
+
format_source = f"## File: {source_docs.metadata['source']}\n\n{source_docs.page_content}"
|
154 |
+
source_expander.markdown(format_source)
|
155 |
+
# Add assistant response to chat history
|
156 |
+
st.session_state.messages.append({"role": "assistant", "content": format_answer})
|
157 |
+
enable_sidebar()
|
158 |
+
st.rerun()
|
vector_db.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.schema import Document
|
2 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
3 |
+
from langchain_community.vectorstores.faiss import FAISS
|
4 |
+
|
5 |
+
|
6 |
+
class VectorDB:
|
7 |
+
embedding_model = "sentence-transformers/all-MiniLM-l6-v2"
|
8 |
+
model_kwargs = {'device': 'cpu'}
|
9 |
+
encode_kwargs = {'normalize_embeddings': False}
|
10 |
+
local_folder = "db/faiss_db"
|
11 |
+
is_load_local = False
|
12 |
+
text_embeddings = None
|
13 |
+
docs_db = None
|
14 |
+
|
15 |
+
def __init__(self):
|
16 |
+
self.text_embeddings = self.init_text_embeddings(self.embedding_model, self.model_kwargs, self.encode_kwargs)
|
17 |
+
self.docs_db = self.init_vector_db(self.local_folder, self.text_embeddings)
|
18 |
+
|
19 |
+
def init_text_embeddings(self, embedding_model: str, model_kwargs: dict, encode_kwargs: dict):
|
20 |
+
return HuggingFaceEmbeddings(
|
21 |
+
model_name=embedding_model,
|
22 |
+
model_kwargs=model_kwargs,
|
23 |
+
encode_kwargs=encode_kwargs
|
24 |
+
)
|
25 |
+
|
26 |
+
def init_vector_db(self, folder_path: str, text_embeddings: HuggingFaceEmbeddings):
|
27 |
+
if self.is_load_local:
|
28 |
+
try:
|
29 |
+
return FAISS.load_local(folder_path=folder_path, embeddings=text_embeddings)
|
30 |
+
except Exception as e:
|
31 |
+
return FAISS.from_documents([Document(page_content="")], embedding=text_embeddings)
|
32 |
+
else:
|
33 |
+
return FAISS.from_documents([Document(page_content="")], embedding=text_embeddings)
|
34 |
+
|
35 |
+
def load_docs_into_vector_db(self, doc_chunks: list):
|
36 |
+
if len(doc_chunks) != 0:
|
37 |
+
if self.docs_db is None:
|
38 |
+
self.docs_db = FAISS.from_documents(doc_chunks, embedding=self.text_embeddings)
|
39 |
+
else:
|
40 |
+
self.docs_db.add_documents(doc_chunks)
|
41 |
+
|
42 |
+
def save_vector_db(self):
|
43 |
+
if self.docs_db is not None and not self.is_load_local:
|
44 |
+
self.docs_db.save_local(self.local_folder)
|
45 |
+
else:
|
46 |
+
print("No vector db to save.")
|