File size: 4,304 Bytes
3d40d3b
5431a98
 
24d5bb3
 
 
5431a98
 
6bfcb60
5431a98
 
 
 
3d40d3b
 
5431a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b978731
5431a98
 
 
 
 
 
 
 
30f4ce1
5431a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00bf96c
5431a98
 
00bf96c
5431a98
 
 
 
 
 
00bf96c
 
5431a98
00bf96c
 
5431a98
00bf96c
5431a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os
from typing import List
from pathlib import Path
from langchain_huggingface import HuggingFaceEmbeddings
#from langchain_community.llms import HuggingFaceEndpoint
from langchain_huggingface import HuggingFaceEndpoint
#from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain.prompts import ChatPromptTemplate
from langchain.schema import StrOutputParser
from langchain_community.document_loaders import (
    PyMuPDFLoader,
)
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma

from langchain.indexes import SQLRecordManager, index
from langchain.schema import Document
from langchain.schema.runnable import Runnable, RunnablePassthrough, RunnableConfig
from langchain.callbacks.base import BaseCallbackHandler

import chainlit as cl


chunk_size = 1024
chunk_overlap = 50

embeddings_model = HuggingFaceEmbeddings()

PDF_STORAGE_PATH = "./public/pdfs"


def process_pdfs(pdf_storage_path: str):
    pdf_directory = Path(pdf_storage_path)
    docs = []  # type: List[Document]
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)

    for pdf_path in pdf_directory.glob("*.pdf"):
        loader = PyMuPDFLoader(str(pdf_path))
        documents = loader.load()
        docs += text_splitter.split_documents(documents)

    doc_search = Chroma.from_documents(docs, embeddings_model)

    namespace = "chromadb/my_documents"
    record_manager = SQLRecordManager(
        namespace, db_url="sqlite:///record_manager_cache.sql"
    )
    record_manager.create_schema()

    index_result = index(
        docs,
        record_manager,
        doc_search,
        cleanup="incremental",
        source_id_key="source",
    )

    print(f"Indexing stats: {index_result}")

    return doc_search


doc_search = process_pdfs(PDF_STORAGE_PATH)
#model = ChatOpenAI(model_name="gpt-4", streaming=True)
os.environ['HUGGINGFACEHUB_API_TOKEN'] = os.environ['HUGGINGFACEHUB_API_TOKEN']
repo_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"

model = HuggingFaceEndpoint(
    repo_id=repo_id, max_new_tokens=8000, temperature=1.0, task="text2text-generation", streaming=True
)


@cl.on_chat_start
async def on_chat_start():
    template = """Answer the question based only on the following context:

    {context}

    Question: {question}
    """
    prompt = ChatPromptTemplate.from_template(template)

    def format_docs(docs):
        return "\n\n".join([d.page_content for d in docs])

    retriever = doc_search.as_retriever()

    runnable = (
        {"context": retriever | format_docs, "question": RunnablePassthrough()}
        | prompt
        | model
        | StrOutputParser()
    )

    cl.user_session.set("runnable", runnable)


@cl.on_message
async def on_message(message: cl.Message):
    runnable = cl.user_session.get("runnable")  # type: Runnable
    msg = cl.Message(content="")

    class PostMessageHandler(BaseCallbackHandler):
        """
        Callback handler for handling the retriever and LLM processes.
        Used to post the sources of the retrieved documents as a Chainlit element.
        """

        def __init__(self, msg: cl.Message):
            BaseCallbackHandler.__init__(self)
            self.msg = msg
            self.sources = set()  # To store unique pairs

        def on_retriever_end(self, documents, *, run_id, parent_run_id, **kwargs):
            for d in documents:
                source_page_pair = (d.metadata['source'], d.metadata['page'])
                self.sources.add(source_page_pair)  # Add unique pairs to the set

        def on_llm_end(self, response, *, run_id, parent_run_id, **kwargs):
            if len(self.sources):
                sources_text = "\n".join([f"{source}#page={page}" for source, page in self.sources])
                self.msg.elements.append(
                    cl.Text(name="Sources", content=sources_text, display="inline")
                )

    async with cl.Step(type="run", name="QA Assistant"):
        async for chunk in runnable.astream(
            message.content,
            config=RunnableConfig(callbacks=[
                cl.LangchainCallbackHandler(),
                PostMessageHandler(msg)
            ]),
        ):
            await msg.stream_token(chunk)

    await msg.send()