import os from typing import List from pathlib import Path from langchain_huggingface import HuggingFaceEmbeddings #from langchain_community.llms import HuggingFaceEndpoint from langchain_huggingface import HuggingFaceEndpoint #from langchain_openai import ChatOpenAI, OpenAIEmbeddings from langchain.prompts import ChatPromptTemplate from langchain.schema import StrOutputParser from langchain_community.document_loaders import ( PyMuPDFLoader, ) from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.vectorstores import Chroma from langchain.indexes import SQLRecordManager, index from langchain.schema import Document from langchain.schema.runnable import Runnable, RunnablePassthrough, RunnableConfig from langchain.callbacks.base import BaseCallbackHandler import chainlit as cl chunk_size = 1024 chunk_overlap = 50 embeddings_model = HuggingFaceEmbeddings() PDF_STORAGE_PATH = "./public/pdfs" def process_pdfs(pdf_storage_path: str): pdf_directory = Path(pdf_storage_path) docs = [] # type: List[Document] text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) for pdf_path in pdf_directory.glob("*.pdf"): loader = PyMuPDFLoader(str(pdf_path)) documents = loader.load() docs += text_splitter.split_documents(documents) doc_search = Chroma.from_documents(docs, embeddings_model) namespace = "chromadb/my_documents" record_manager = SQLRecordManager( namespace, db_url="sqlite:///record_manager_cache.sql" ) record_manager.create_schema() index_result = index( docs, record_manager, doc_search, cleanup="incremental", source_id_key="source", ) print(f"Indexing stats: {index_result}") return doc_search doc_search = process_pdfs(PDF_STORAGE_PATH) #model = ChatOpenAI(model_name="gpt-4", streaming=True) os.environ['HUGGINGFACEHUB_API_TOKEN'] = os.environ['HUGGINGFACEHUB_API_TOKEN'] repo_id = "mistralai/Mixtral-8x7B-Instruct-v0.1" model = HuggingFaceEndpoint( repo_id=repo_id, max_new_tokens=8000, temperature=1.0, task="text2text-generation", streaming=True ) @cl.on_chat_start async def on_chat_start(): await cl.Message(f"> REVIEWSTREAM").send() template = """Answer the question based only on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) def format_docs(docs): return "\n\n".join([d.page_content for d in docs]) retriever = doc_search.as_retriever() runnable = ( {"context": retriever | format_docs, "question": RunnablePassthrough()} | prompt | model | StrOutputParser() ) cl.user_session.set("runnable", runnable) @cl.on_message async def on_message(message: cl.Message): runnable = cl.user_session.get("runnable") # type: Runnable msg = cl.Message(content="") class PostMessageHandler(BaseCallbackHandler): """ Callback handler for handling the retriever and LLM processes. Used to post the sources of the retrieved documents as a Chainlit element. """ def __init__(self, msg: cl.Message): BaseCallbackHandler.__init__(self) self.msg = msg self.sources = set() # To store unique pairs def on_retriever_end(self, documents, *, run_id, parent_run_id, **kwargs): for d in documents: source_page_pair = (d.metadata['source'], d.metadata['page']) self.sources.add(source_page_pair) # Add unique pairs to the set def on_llm_end(self, response, *, run_id, parent_run_id, **kwargs): if len(self.sources): sources_text = "\n".join([f"{source}#page={page}" for source, page in self.sources]) self.msg.elements.append( cl.Text(name="Sources", content=sources_text, display="inline") ) async with cl.Step(type="run", name="QA Assistant"): async for chunk in runnable.astream( message.content, config=RunnableConfig(callbacks=[ cl.LangchainCallbackHandler(), PostMessageHandler(msg) ]), ): await msg.stream_token(chunk) await msg.send()