import os import json import bcrypt from typing import List from pathlib import Path from langchain_huggingface import HuggingFaceEmbeddings from langchain_huggingface import HuggingFaceEndpoint from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain.schema import StrOutputParser from operator import itemgetter from pinecone import Pinecone from langchain_pinecone import PineconeVectorStore from langchain_community.chat_message_histories import ChatMessageHistory from langchain.memory import ConversationBufferMemory from langchain.schema.runnable import Runnable, RunnablePassthrough, RunnableConfig, RunnableLambda from langchain.callbacks.base import BaseCallbackHandler from langchain.chains import ( StuffDocumentsChain, ConversationalRetrievalChain ) from langchain_core.tracers.context import tracing_v2_enabled import chainlit as cl from chainlit.input_widget import TextInput, Select, Switch, Slider from deep_translator import GoogleTranslator @cl.password_auth_callback def auth_callback(username: str, password: str): auth = json.loads(os.environ['CHAINLIT_AUTH_LOGIN']) ident = next(d['ident'] for d in auth if d['ident'] == username) pwd = next(d['pwd'] for d in auth if d['ident'] == username) resultLogAdmin = bcrypt.checkpw(username.encode('utf-8'), bcrypt.hashpw(ident.encode('utf-8'), bcrypt.gensalt())) resultPwdAdmin = bcrypt.checkpw(password.encode('utf-8'), bcrypt.hashpw(pwd.encode('utf-8'), bcrypt.gensalt())) resultRole = next(d['role'] for d in auth if d['ident'] == username) if resultLogAdmin and resultPwdAdmin and resultRole == "admindatapcc": return cl.User( identifier=ident + " : đŸ§‘â€đŸ’Œ Admin Datapcc", metadata={"role": "admin", "provider": "credentials"} ) elif resultLogAdmin and resultPwdAdmin and resultRole == "userdatapcc": return cl.User( identifier=ident + " : 🧑‍🎓 User Datapcc", metadata={"role": "user", "provider": "credentials"} ) def LLModel(): os.environ['HUGGINGFACEHUB_API_TOKEN'] = os.environ['HUGGINGFACEHUB_API_TOKEN'] repo_id = "mistralai/Mixtral-8x7B-Instruct-v0.1" model = HuggingFaceEndpoint( repo_id=repo_id, max_new_tokens=5500, temperature=1.0, task="text2text-generation", streaming=True ) return model def VectorDatabase(categorie): if categorie != "year": os.environ['PINECONE_API_KEY'] = os.environ['PINECONE_API_KEY'] index_name = "all-venus" else: os.environ['PINECONE_API_KEY'] = os.environ['PINECONE_API_KEYJDLP'] index_name = "all-jdlp" embeddings = HuggingFaceEmbeddings() vectorstore = PineconeVectorStore( index_name=index_name, embedding=embeddings ) return vectorstore def Retriever(categorie): vectorstore = VectorDatabase(categorie) if categorie != "year": retriever = vectorstore.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": .7, "k": 150,"filter": {'categorie': {'$eq': categorie}}}) else: retriever = vectorstore.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": .7, "k": 150,"filter": {'year': {'$gte': 2019}}}) #search = vectorstore.similarity_search(query,k=50, filter={"categorie": {"$eq": "bibliographie-OPP-DGDIN"}, 'Source': {'$eq': 'Source : PersĂ©e'}}) return retriever def Search(input, categorie): vectorstore = VectorDatabase(categorie) results = [] test = [] sources_text = "" verbatim_text = "" count = 0 if categorie != "year": search = vectorstore.similarity_search(input,k=50, filter={"categorie": {"$eq": categorie}}) for i in range(0,len(search)): if search[i].metadata['Lien'] not in test: if count <= 15: count = count + 1 test.append(search[i].metadata['Lien']) sources_text = sources_text + str(count) + ". " + search[i].metadata['Titre'] + ', ' + search[i].metadata['Auteurs'] + ', ' + search[i].metadata['Lien'] + "\n" verbatim_text = verbatim_text + "

" + str(count) + ". " + search[i].metadata['Phrase'] + "

 

" else: search = vectorstore.similarity_search(input,k=50, filter={"year": {"$gte": 2019}}) for i in range(0,len(search)): if count <= 15: count = count + 1 sources_text = sources_text + str(count) + ". " + search[i].metadata['title'] + ' (JDLP : ' + search[i].metadata['year'] + '), ' + search[i].metadata['author'] + ', ' + search[i].metadata['file'] + "\n" verbatim_text = verbatim_text + "

" + str(count) + ". JDLP : " + search[i].metadata['jdlp'] + "

" + search[i].metadata['text'] + "

" results = [sources_text, verbatim_text] return results @cl.on_chat_start async def on_chat_start(): await cl.Message(f"> REVIEWSTREAM").send() #await cl.Message(f"Nous avons le plaisir de vous accueillir dans l'application de recherche et d'analyse des publications.").send() res = await cl.AskActionMessage( content="
SĂ©lectionnez source documentaire
", actions=[ cl.Action(name="bibliographie-OPP-DGDIN", value="PĂ©dagogie durable", label="đŸ”„ PĂ©dagogie durable : exemple : «quels sont les modĂšles d'apprentissage dans les universitĂ©s?»"), cl.Action(name="bibliographie-OPP-DGDIN", value="Lieux d'apprentissage", label="đŸ”„ Lieux d'apprentissage : exemple : «donne des exemples de lieu d'apprentissage dans les universitĂ©s?»"), cl.Action(name="year", value="JournĂ©e de La PĂ©dagogie", label="đŸ”„ JournĂ©e de La PĂ©dagogie : exemple : «Quelles sont les bonnes pratiques des plateformes de e-learning?»"), ], timeout="3600" ).send() listPrompts_name = f"Liste des revues de recherche" contentPrompts = """

Hal Archives Ouvertes : Une archive ouverte est un réservoir numérique contenant des documents issus de la recherche scientifique, généralement déposés par leurs auteurs, et permettant au grand public d'y accéder gratuitement et sans contraintes.

Persée : offre un accÚs libre et gratuit à des collections complÚtes de publications scientifiques (revues, livres, actes de colloques, publications en série, sources primaires, etc.) associé à une gamme d'outils de recherche et d'exploitation.

""" prompt_elements = [] prompt_elements.append( cl.Text(content=contentPrompts, name=listPrompts_name, display="side") ) await cl.Message(content="📚 " + listPrompts_name, elements=prompt_elements).send() settings = await cl.ChatSettings( [ Select( id="Model", label="Publications de recherche", values=["---", "HAL", "PersĂ©e"], initial_index=0, ), ] ).send() if res: await cl.Message(f"Vous pouvez requĂȘter sur la thĂ©matique : {res.get('value')}").send() cl.user_session.set("selectRequest", res.get("name")) ########## Chain with streaming ########## message_history = ChatMessageHistory() memory = ConversationBufferMemory(memory_key="chat_history",output_key="answer",chat_memory=message_history,return_messages=True) qa = ConversationalRetrievalChain.from_llm( LLModel(), memory=memory, chain_type="stuff", return_source_documents=True, verbose=False, retriever=Retriever(res.get("name")) ) cl.user_session.set("runnable", qa) cl.user_session.set("memory", memory) @cl.on_message async def on_message(message: cl.Message): memory = cl.user_session.get("memory") runnable = cl.user_session.get("runnable") # type: Runnable msg = cl.Message(content="") class PostMessageHandler(BaseCallbackHandler): """ Callback handler for handling the retriever and LLM processes. Used to post the sources of the retrieved documents as a Chainlit element. """ def __init__(self, msg: cl.Message): BaseCallbackHandler.__init__(self) self.msg = msg self.sources = set() # To store unique pairs def on_retriever_end(self, documents, *, run_id, parent_run_id, **kwargs): for d in documents: source_page_pair = (d.metadata['source'], d.metadata['page']) self.sources.add(source_page_pair) # Add unique pairs to the set def on_llm_end(self, response, *, run_id, parent_run_id, **kwargs): sources_text = "\n".join([f"{source}#page={page}" for source, page in self.sources]) self.msg.elements.append( cl.Text(name="Sources", content=sources_text, display="inline") ) async with cl.Step(type="run", name="RĂ©ponse de Mistral"): #async for chunk in runnable.astream( # {"question": message.content}, # config=RunnableConfig(callbacks=[ # cl.AsyncLangchainCallbackHandler(stream_final_answer=True) # ]), #): # await msg.stream_token(chunk) cb = cl.AsyncLangchainCallbackHandler() with tracing_v2_enabled(): results = await runnable.acall("Contexte : Vous ĂȘtes un chercheur de l'enseignement supĂ©rieur et vous ĂȘtes douĂ© pour faire des analyses d'articles de recherche sur les thĂ©matiques liĂ©es Ă  la pĂ©dagogie, en fonction des critĂšres dĂ©finis ci-avant. En fonction des informations suivantes et du contexte suivant seulement et strictement, rĂ©pondez en langue française strictement Ă  la question ci-dessous Ă  partir du contexte ci-dessous. En plus, tu crĂ©eras 3 questions supplĂ©mentaires en relation avec le contexte initial. Tu Ă©criras les 3 questions supplĂ©mentaires en relation avec le contexte initial, avec un titrage de niveau 1 qui a pour titre \"Questions en relation avec le contexte : \". Si vous ne pouvez pas rĂ©pondre Ă  la question sur la base des informations, dites que vous ne trouvez pas de rĂ©ponse ou que vous ne parvenez pas Ă  trouver de rĂ©ponse. Essayez donc de comprendre en profondeur le contexte et rĂ©pondez uniquement en vous basant sur les informations fournies. Ne gĂ©nĂ©rez pas de rĂ©ponses non pertinentes. Question : " + message.content, callbacks=[cb]) answer = results["answer"] await cl.Message(content=GoogleTranslator(source='auto', target='fr').translate(answer)).send() #search = vectorstore.similarity_search(message.content,k=50, filter={"categorie": {"$eq": "bibliographie-OPP-DGDIN"}}) search = Search(message.content, res.get("name")) sources = [ cl.Text(name="Sources", content=search[0], display="inline") ] await cl.Message( content="Sources : ", elements=sources, ).send() verbatim = [ cl.Text(name="Verbatim", content=search[1], display="side") ] await cl.Message( content="📚 Liste des Verbatim ", elements=verbatim, ).send()