Spaces:
Running
Running
import os | |
import json | |
import bcrypt | |
import chainlit as cl | |
from chainlit.input_widget import TextInput, Select, Switch, Slider | |
from literalai import LiteralClient | |
literal_client = LiteralClient(api_key=os.getenv("LITERAL_API_KEY")) | |
from operator import itemgetter | |
from pinecone import Pinecone | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.llms import HuggingFaceEndpoint | |
from langchain.memory import ConversationBufferMemory | |
from langchain.schema import StrOutputParser | |
from langchain.schema.runnable import Runnable | |
from langchain.schema.runnable.config import RunnableConfig | |
from langchain.schema.runnable import Runnable, RunnablePassthrough, RunnableLambda | |
from langchain_core.prompts import PromptTemplate | |
os.environ['HUGGINGFACEHUB_API_TOKEN'] = os.environ['HUGGINGFACEHUB_API_TOKEN'] | |
repo_id = "mistralai/Mixtral-8x7B-Instruct-v0.1" | |
llm = HuggingFaceEndpoint( | |
repo_id=repo_id, max_new_tokens=8000, temperature=1.0, task="text2text-generation", streaming=True | |
) | |
os.environ['PINECONE_API_KEY'] = os.environ['PINECONE_API_KEY'] | |
embeddings = HuggingFaceEmbeddings() | |
index_name = "all-venus" | |
pc = Pinecone( | |
api_key=os.environ['PINECONE_API_KEY'] | |
) | |
index = pc.Index(index_name) | |
def auth_callback(username: str, password: str): | |
auth = json.loads(os.environ['CHAINLIT_AUTH_LOGIN']) | |
ident = next(d['ident'] for d in auth if d['ident'] == username) | |
pwd = next(d['pwd'] for d in auth if d['ident'] == username) | |
resultLogAdmin = bcrypt.checkpw(username.encode('utf-8'), bcrypt.hashpw(ident.encode('utf-8'), bcrypt.gensalt())) | |
resultPwdAdmin = bcrypt.checkpw(password.encode('utf-8'), bcrypt.hashpw(pwd.encode('utf-8'), bcrypt.gensalt())) | |
resultRole = next(d['role'] for d in auth if d['ident'] == username) | |
if resultLogAdmin and resultPwdAdmin and resultRole == "admindatapcc": | |
return cl.User( | |
identifier=ident + " : 🧑💼 Admin Datapcc", metadata={"role": "admin", "provider": "credentials"} | |
) | |
elif resultLogAdmin and resultPwdAdmin and resultRole == "userdatapcc": | |
return cl.User( | |
identifier=ident + " : 🧑🎓 User Datapcc", metadata={"role": "user", "provider": "credentials"} | |
) | |
def rename(orig_author: str): | |
rename_dict = {"LLMMathChain": "Albert Einstein", "Doc Chain Assistant": "Assistant Reviewstream"} | |
return rename_dict.get(orig_author, orig_author) | |
async def chat_profile(): | |
return [ | |
cl.ChatProfile(name="Reviewstream",markdown_description="Requêter sur les publications de recherche",icon="/public/logo-ofipe.jpg",), | |
cl.ChatProfile(name="Imagestream",markdown_description="Requêter sur un ensemble d'images",icon="./public/logo-ofipe.jpg",), | |
] | |
async def start(): | |
await cl.Message(f"> REVIEWSTREAM").send() | |
await cl.Message(f"Nous avons le plaisir de vous accueillir dans l'application de recherche et d'analyse des publications.").send() | |
listPrompts_name = f"Liste des revues de recherche" | |
contentPrompts = """<p><img src='/public/hal-logo-header.png' width='32' align='absmiddle' /> <strong> Hal Archives Ouvertes</strong> : Une archive ouverte est un réservoir numérique contenant des documents issus de la recherche scientifique, généralement déposés par leurs auteurs, et permettant au grand public d'y accéder gratuitement et sans contraintes. | |
</p> | |
<p><img src='/public/logo-persee.png' width='32' align='absmiddle' /> <strong>Persée</strong> : offre un accès libre et gratuit à des collections complètes de publications scientifiques (revues, livres, actes de colloques, publications en série, sources primaires, etc.) associé à une gamme d'outils de recherche et d'exploitation.</p> | |
""" | |
prompt_elements = [] | |
prompt_elements.append( | |
cl.Text(content=contentPrompts, name=listPrompts_name, display="side") | |
) | |
await cl.Message(content="📚 " + listPrompts_name, elements=prompt_elements).send() | |
settings = await cl.ChatSettings( | |
[ | |
Select( | |
id="Model", | |
label="Publications de recherche", | |
values=["---", "HAL", "Persée"], | |
initial_index=0, | |
), | |
] | |
).send() | |
memory = ConversationBufferMemory( | |
return_messages=True | |
) | |
template = """<s>[INST] Vous êtes un chercheur de l'enseignement supérieur et vous êtes doué pour faire des analyses d'articles de recherche sur les thématiques liées à la pédagogie, en fonction des critères définis ci-avant. | |
En fonction des informations suivantes et du contexte suivant seulement et strictement, répondez en langue française strictement à la question ci-dessous à partir du contexte ci-dessous. Si vous ne pouvez pas répondre à la question sur la base des informations, dites que vous ne trouvez pas de réponse ou que vous ne parvenez pas à trouver de réponse. Essayez donc de comprendre en profondeur le contexte et répondez uniquement en vous basant sur les informations fournies. Ne générez pas de réponses non pertinentes. | |
{context} | |
{question} [/INST] </s> | |
""" | |
prompt = PromptTemplate(template=template, input_variables=["question","context"]) | |
chain = ( | |
RunnablePassthrough.assign( | |
history=RunnableLambda(memory.load_memory_variables) | itemgetter("history") | |
) | |
| prompt | llm | StrOutputParser() | |
) | |
cl.user_session.set("runnable", chain) | |
async def main(message: cl.Message): | |
runnable = cl.user_session.get("runnable") | |
xq = embeddings.embed_query(message.content) | |
xc = index.query(vector=xq, filter={"categorie": {"$eq": "bibliographie-OPP-DGDIN"}},top_k=150, include_metadata=True) | |
context_p = "" | |
for result in xc['matches']: | |
context_p = context_p + result['metadata']['text'] | |
msg = cl.Message(author="Datapcc : 🌐🌐🌐",content="") | |
async for chunk in runnable.astream({"question": message.content,"context":context_p}, | |
config=RunnableConfig(callbacks=[cl.AsyncLangchainCallbackHandler(stream_final_answer=True)])): | |
await msg.stream_token(chunk) |