import os import json import bcrypt from typing import List from pathlib import Path from langchain_huggingface import HuggingFaceEmbeddings #from langchain_community.llms import HuggingFaceEndpoint from langchain_huggingface import HuggingFaceEndpoint #from langchain_openai import ChatOpenAI, OpenAIEmbeddings from langchain.prompts import ChatPromptTemplate from langchain.schema import StrOutputParser from langchain_community.document_loaders import ( PyMuPDFLoader, ) from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.vectorstores import Chroma from langchain.indexes import SQLRecordManager, index from langchain.schema import Document from langchain.schema.runnable import Runnable, RunnablePassthrough, RunnableConfig from langchain.callbacks.base import BaseCallbackHandler import chainlit as cl from chainlit.input_widget import TextInput, Select, Switch, Slider @cl.password_auth_callback def auth_callback(username: str, password: str): auth = json.loads(os.environ['CHAINLIT_AUTH_LOGIN']) ident = next(d['ident'] for d in auth if d['ident'] == username) pwd = next(d['pwd'] for d in auth if d['ident'] == username) resultLogAdmin = bcrypt.checkpw(username.encode('utf-8'), bcrypt.hashpw(ident.encode('utf-8'), bcrypt.gensalt())) resultPwdAdmin = bcrypt.checkpw(password.encode('utf-8'), bcrypt.hashpw(pwd.encode('utf-8'), bcrypt.gensalt())) resultRole = next(d['role'] for d in auth if d['ident'] == username) if resultLogAdmin and resultPwdAdmin and resultRole == "admindatapcc": return cl.User( identifier=ident + " : 🧑💼 Admin Datapcc", metadata={"role": "admin", "provider": "credentials"} ) elif resultLogAdmin and resultPwdAdmin and resultRole == "userdatapcc": return cl.User( identifier=ident + " : 🧑🎓 User Datapcc", metadata={"role": "user", "provider": "credentials"} ) chunk_size = 1024 chunk_overlap = 50 embeddings_model = HuggingFaceEmbeddings() PDF_STORAGE_PATH = "./public/pdfs" def process_pdfs(pdf_storage_path: str): pdf_directory = Path(pdf_storage_path) docs = [] # type: List[Document] text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) for pdf_path in pdf_directory.glob("*.pdf"): loader = PyMuPDFLoader(str(pdf_path)) documents = loader.load() docs += text_splitter.split_documents(documents) doc_search = Chroma.from_documents(docs, embeddings_model) namespace = "chromadb/my_documents" record_manager = SQLRecordManager( namespace, db_url="sqlite:///record_manager_cache.sql" ) record_manager.create_schema() index_result = index( docs, record_manager, doc_search, cleanup="incremental", source_id_key="source", ) print(f"Indexing stats: {index_result}") return doc_search doc_search = process_pdfs(PDF_STORAGE_PATH) #model = ChatOpenAI(model_name="gpt-4", streaming=True) os.environ['HUGGINGFACEHUB_API_TOKEN'] = os.environ['HUGGINGFACEHUB_API_TOKEN'] repo_id = "mistralai/Mixtral-8x7B-Instruct-v0.1" model = HuggingFaceEndpoint( repo_id=repo_id, max_new_tokens=8000, temperature=1.0, task="text2text-generation", streaming=True ) @cl.on_chat_start async def on_chat_start(): await cl.Message(f"> REVIEWSTREAM").send() settings = await cl.ChatSettings( [ Select( id="Model", label="Publications de recherche", values=["---", "HAL", "Persée"], initial_index=0, ), ] ).send() res = await cl.AskActionMessage( content="