File size: 2,138 Bytes
ce91ea1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import torch.nn as nn
import pretrainedmodels
from torchvision.models import densenet121
from layers import Flatten
import torch
import torchvision.transforms as transforms
from pathlib import Path
from constant import IMAGENET_MEAN, IMAGENET_STD
import os
import sys

script_dir = os.path.dirname(os.path.abspath(__file__))
yolov9 = os.path.join(script_dir, '..', 'chestXray14')
sys.path.append(yolov9)

class ChexNet(nn.Module):
    tfm = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(IMAGENET_MEAN, IMAGENET_STD)
    ])

    def __init__(self, trained=False, model_name='20180525-222635'):
        super().__init__()
        # chexnet.parameters() is freezed except head
        if trained:
            self.load_model(model_name)
        else:
            self.load_pretrained()

    def load_model(self, model_name):
        self.backbone = densenet121(False).features
        self.head = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            Flatten(),
            nn.Linear(1024, 14)
        )
        path = Path('chestX-ray-14')
        state_dict = torch.load('chexnet.h5')
        self.load_state_dict(state_dict)

    def load_pretrained(self, torch=False):
        if torch:
            self.backbone = densenet121(True).features
        else:
            self.backbone = pretrainedmodels.__dict__['densenet121']().features

        self.head = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            Flatten(),
            nn.Linear(1024, 14)
        )

    def forward(self, x):
        return self.head(self.backbone(x))

    def predict(self, image):
        """

        input: PIL image (w, h, c)

        output: prob np.array

        """
        image_tensor = self.tfm(image).unsqueeze(0)  # Add batch dimension
        image_tensor = image_tensor.to(next(self.parameters()).device)  # Move to the same device as the model
        with torch.no_grad():
            py = torch.sigmoid(self(image_tensor))
        prob = py.cpu().numpy()[0]
        return prob