Spaces:
Sleeping
Sleeping
import torchvision | |
import torch.nn as nn | |
import pretrainedmodels | |
import torch.nn.functional as F | |
from constant import SCALE_FACTOR | |
import math | |
from pretrainedmodels.models.dpn import adaptive_avgmax_pool2d | |
class DPN(nn.Module): | |
def __init__(self, variant): | |
super(DPN, self).__init__() | |
assert variant in ['dpn68', 'dpn68b', 'dpn92', 'dpn98', 'dpn131', 'dpn107'] | |
# load retrain model | |
model = pretrainedmodels.__dict__[variant](num_classes=1000, pretrained='imagenet') | |
self.features = model.features | |
num_ftrs = model.classifier.in_channels | |
self.classifier = nn.Sequential( | |
nn.Conv2d(num_ftrs, 14, kernel_size=1, bias=True), # something wrong here abt dimension | |
nn.Sigmoid() | |
) | |
# load other info | |
self.mean = model.mean | |
self.std = model.std | |
self.input_size = model.input_size[1] # assume every input is a square image | |
self.input_range = model.input_range | |
self.input_space = model.input_space | |
self.resize_size = int(math.floor(self.input_size / SCALE_FACTOR)) | |
def forward(self, x): | |
x = self.features(x) # 1x1024x7x7 | |
if not self.training and self.test_time_tool: | |
x = F.avg_pool2d(x, kernel_size=7, stride=1) | |
x = self.classifier(x) | |
x = adaptive_avgmax_pool2d(out, pool_type='avgmax') # something wrong here abt dimension | |
else: | |
x = adaptive_avgmax_pool2d(x, pool_type='avg') | |
x = self.classifier(x) | |
return x | |
def extract(self, x): | |
return self.features(x) | |
def build(variant): | |
net = DPN(variant).cuda() | |
return net | |
architect='dpn' | |