Spaces:
Sleeping
Sleeping
import torchvision | |
import torch.nn as nn | |
import pretrainedmodels | |
import torch.nn.functional as F | |
from collections import OrderedDict | |
from constant import SCALE_FACTOR | |
import math | |
class Resnet(nn.Module): | |
def __init__(self, variant): | |
super(Resnet, self).__init__() | |
assert variant in ['senet154', 'se_resnext101_32x4d', 'se_resnext50_32x4d', 'se_resnet152', 'se_resnet101', 'se_resnet50'] | |
# load retrain model | |
model = pretrainedmodels.__dict__[variant](num_classes=1000, pretrained='imagenet') | |
self.features = nn.Sequential(OrderedDict([ | |
('layer0', model.layer0), | |
('layer1', model.layer1), | |
('layer2', model.layer2), | |
('layer3', model.layer3), | |
('layer4', model.layer4) | |
])) | |
''' | |
Dropout | |
- For SENet154: 0.2 | |
- For SE-ResNet models: None | |
- For SE-ResNeXt models: None | |
''' | |
self.dropout = model.dropout | |
num_ftrs = model.last_linear.in_features | |
self.classifier = nn.Sequential( | |
nn.Linear(num_ftrs, 14), | |
nn.Sigmoid() | |
) | |
# load other info | |
# load other info | |
self.mean = model.mean | |
self.std = model.std | |
self.input_size = model.input_size[1] # assume every input is a square image | |
self.input_range = model.input_range | |
self.input_space = model.input_space | |
self.resize_size = int(math.floor(self.input_size / SCALE_FACTOR)) | |
def forward(self, x): | |
x = self.features(x) # 1x2048x7x7 | |
s = x.size()[3] # 7 if input image is 224x224, 16 if input image is 512x512 | |
x = F.avg_pool2d(x, kernel_size=s, stride=1) # 1x2048x1x1 | |
x = x.view(x.size(0), -1) # 1x2048 | |
x = self.classifier(x) # 1x1000 | |
return x | |
def extract(self, x): | |
return self.features(x) | |
def build(variant): | |
net = Resnet(variant).cuda() | |
return net | |
architect='senet' |