Spaces:
Sleeping
Sleeping
from dataclasses import dataclass | |
from typing import Optional | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from x3D_utils import BaseModule | |
from basic_transformer_block import BasicTransformerBlock | |
class Transformer1D(BaseModule): | |
class Config(BaseModule.Config): | |
num_attention_heads: int = 16 | |
attention_head_dim: int = 88 | |
in_channels: Optional[int] = None | |
out_channels: Optional[int] = None | |
num_layers: int = 1 | |
dropout: float = 0.0 | |
norm_num_groups: int = 32 | |
cross_attention_dim: Optional[int] = None | |
attention_bias: bool = False | |
activation_fn: str = "geglu" | |
only_cross_attention: bool = False | |
double_self_attention: bool = False | |
upcast_attention: bool = False | |
norm_type: str = "layer_norm" | |
norm_elementwise_affine: bool = True | |
gradient_checkpointing: bool = False | |
cfg: Config | |
def configure(self) -> None: | |
self.num_attention_heads = self.cfg.num_attention_heads | |
self.attention_head_dim = self.cfg.attention_head_dim | |
inner_dim = self.num_attention_heads * self.attention_head_dim | |
linear_cls = nn.Linear | |
# 2. Define input layers | |
self.in_channels = self.cfg.in_channels | |
self.norm = torch.nn.GroupNorm( | |
num_groups=self.cfg.norm_num_groups, | |
num_channels=self.cfg.in_channels, | |
eps=1e-6, | |
affine=True, | |
) | |
self.proj_in = linear_cls(self.cfg.in_channels, inner_dim) | |
# 3. Define transformers blocks | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
BasicTransformerBlock( | |
inner_dim, | |
self.num_attention_heads, | |
self.attention_head_dim, | |
dropout=self.cfg.dropout, | |
cross_attention_dim=self.cfg.cross_attention_dim, | |
activation_fn=self.cfg.activation_fn, | |
attention_bias=self.cfg.attention_bias, | |
only_cross_attention=self.cfg.only_cross_attention, | |
double_self_attention=self.cfg.double_self_attention, | |
upcast_attention=self.cfg.upcast_attention, | |
norm_type=self.cfg.norm_type, | |
norm_elementwise_affine=self.cfg.norm_elementwise_affine, | |
) | |
for d in range(self.cfg.num_layers) | |
] | |
) | |
# 4. Define output layers | |
self.out_channels = ( | |
self.cfg.in_channels | |
if self.cfg.out_channels is None | |
else self.cfg.out_channels | |
) | |
self.proj_out = linear_cls(inner_dim, self.cfg.in_channels) | |
self.gradient_checkpointing = self.cfg.gradient_checkpointing | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
): | |
""" | |
The [`Transformer1DModel`] forward method. | |
Args: | |
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous): | |
Input `hidden_states`. | |
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): | |
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to | |
self-attention. | |
attention_mask ( `torch.Tensor`, *optional*): | |
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask | |
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large | |
negative values to the attention scores corresponding to "discard" tokens. | |
encoder_attention_mask ( `torch.Tensor`, *optional*): | |
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported: | |
* Mask `(batch, sequence_length)` True = keep, False = discard. | |
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard. | |
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format | |
above. This bias will be added to the cross-attention scores. | |
Returns: | |
torch.FloatTensor | |
""" | |
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension. | |
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward. | |
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias. | |
# expects mask of shape: | |
# [batch, key_tokens] | |
# adds singleton query_tokens dimension: | |
# [batch, 1, key_tokens] | |
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: | |
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) | |
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) | |
if attention_mask is not None and attention_mask.ndim == 2: | |
# assume that mask is expressed as: | |
# (1 = keep, 0 = discard) | |
# convert mask into a bias that can be added to attention scores: | |
# (keep = +0, discard = -10000.0) | |
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 | |
attention_mask = attention_mask.unsqueeze(1) | |
# convert encoder_attention_mask to a bias the same way we do for attention_mask | |
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: | |
encoder_attention_mask = ( | |
1 - encoder_attention_mask.to(hidden_states.dtype) | |
) * -10000.0 | |
encoder_attention_mask = encoder_attention_mask.unsqueeze(1) | |
# 1. Input | |
batch, _, seq_len = hidden_states.shape | |
residual = hidden_states | |
hidden_states = self.norm(hidden_states) | |
inner_dim = hidden_states.shape[1] | |
hidden_states = hidden_states.permute(0, 2, 1).reshape( | |
batch, seq_len, inner_dim | |
) | |
hidden_states = self.proj_in(hidden_states) | |
# 2. Blocks | |
for block in self.transformer_blocks: | |
if self.training and self.gradient_checkpointing: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
block, | |
hidden_states, | |
attention_mask, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
use_reentrant=False, | |
) | |
else: | |
hidden_states = block( | |
hidden_states, | |
attention_mask=attention_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
) | |
# 3. Output | |
hidden_states = self.proj_out(hidden_states) | |
hidden_states = ( | |
hidden_states.reshape(batch, seq_len, inner_dim) | |
.permute(0, 2, 1) | |
.contiguous() | |
) | |
output = hidden_states + residual | |
return output |