Spaces:
Sleeping
Sleeping
import glob | |
import json | |
import logging | |
import os | |
import sys | |
from pathlib import Path | |
logger = logging.getLogger(__name__) | |
FILE = Path(__file__).resolve() | |
ROOT = FILE.parents[3] # YOLOv5 root directory | |
if str(ROOT) not in sys.path: | |
sys.path.append(str(ROOT)) # add ROOT to PATH | |
try: | |
import comet_ml | |
# Project Configuration | |
config = comet_ml.config.get_config() | |
COMET_PROJECT_NAME = config.get_string(os.getenv("COMET_PROJECT_NAME"), "comet.project_name", default="yolov5") | |
except (ModuleNotFoundError, ImportError): | |
comet_ml = None | |
COMET_PROJECT_NAME = None | |
import PIL | |
import torch | |
import torchvision.transforms as T | |
import yaml | |
from utils.dataloaders import img2label_paths | |
from utils.general import check_dataset, scale_boxes, xywh2xyxy | |
from utils.metrics import box_iou | |
COMET_PREFIX = "comet://" | |
COMET_MODE = os.getenv("COMET_MODE", "online") | |
# Model Saving Settings | |
COMET_MODEL_NAME = os.getenv("COMET_MODEL_NAME", "yolov5") | |
# Dataset Artifact Settings | |
COMET_UPLOAD_DATASET = os.getenv("COMET_UPLOAD_DATASET", "false").lower() == "true" | |
# Evaluation Settings | |
COMET_LOG_CONFUSION_MATRIX = os.getenv("COMET_LOG_CONFUSION_MATRIX", "true").lower() == "true" | |
COMET_LOG_PREDICTIONS = os.getenv("COMET_LOG_PREDICTIONS", "true").lower() == "true" | |
COMET_MAX_IMAGE_UPLOADS = int(os.getenv("COMET_MAX_IMAGE_UPLOADS", 100)) | |
# Confusion Matrix Settings | |
CONF_THRES = float(os.getenv("CONF_THRES", 0.001)) | |
IOU_THRES = float(os.getenv("IOU_THRES", 0.6)) | |
# Batch Logging Settings | |
COMET_LOG_BATCH_METRICS = os.getenv("COMET_LOG_BATCH_METRICS", "false").lower() == "true" | |
COMET_BATCH_LOGGING_INTERVAL = os.getenv("COMET_BATCH_LOGGING_INTERVAL", 1) | |
COMET_PREDICTION_LOGGING_INTERVAL = os.getenv("COMET_PREDICTION_LOGGING_INTERVAL", 1) | |
COMET_LOG_PER_CLASS_METRICS = os.getenv("COMET_LOG_PER_CLASS_METRICS", "false").lower() == "true" | |
RANK = int(os.getenv("RANK", -1)) | |
to_pil = T.ToPILImage() | |
class CometLogger: | |
"""Log metrics, parameters, source code, models and much more | |
with Comet | |
""" | |
def __init__(self, opt, hyp, run_id=None, job_type="Training", **experiment_kwargs) -> None: | |
self.job_type = job_type | |
self.opt = opt | |
self.hyp = hyp | |
# Comet Flags | |
self.comet_mode = COMET_MODE | |
self.save_model = opt.save_period > -1 | |
self.model_name = COMET_MODEL_NAME | |
# Batch Logging Settings | |
self.log_batch_metrics = COMET_LOG_BATCH_METRICS | |
self.comet_log_batch_interval = COMET_BATCH_LOGGING_INTERVAL | |
# Dataset Artifact Settings | |
self.upload_dataset = self.opt.upload_dataset if self.opt.upload_dataset else COMET_UPLOAD_DATASET | |
self.resume = self.opt.resume | |
# Default parameters to pass to Experiment objects | |
self.default_experiment_kwargs = { | |
"log_code": False, | |
"log_env_gpu": True, | |
"log_env_cpu": True, | |
"project_name": COMET_PROJECT_NAME,} | |
self.default_experiment_kwargs.update(experiment_kwargs) | |
self.experiment = self._get_experiment(self.comet_mode, run_id) | |
self.data_dict = self.check_dataset(self.opt.data) | |
self.class_names = self.data_dict["names"] | |
self.num_classes = self.data_dict["nc"] | |
self.logged_images_count = 0 | |
self.max_images = COMET_MAX_IMAGE_UPLOADS | |
if run_id is None: | |
self.experiment.log_other("Created from", "YOLOv5") | |
if not isinstance(self.experiment, comet_ml.OfflineExperiment): | |
workspace, project_name, experiment_id = self.experiment.url.split("/")[-3:] | |
self.experiment.log_other( | |
"Run Path", | |
f"{workspace}/{project_name}/{experiment_id}", | |
) | |
self.log_parameters(vars(opt)) | |
self.log_parameters(self.opt.hyp) | |
self.log_asset_data( | |
self.opt.hyp, | |
name="hyperparameters.json", | |
metadata={"type": "hyp-config-file"}, | |
) | |
self.log_asset( | |
f"{self.opt.save_dir}/opt.yaml", | |
metadata={"type": "opt-config-file"}, | |
) | |
self.comet_log_confusion_matrix = COMET_LOG_CONFUSION_MATRIX | |
if hasattr(self.opt, "conf_thres"): | |
self.conf_thres = self.opt.conf_thres | |
else: | |
self.conf_thres = CONF_THRES | |
if hasattr(self.opt, "iou_thres"): | |
self.iou_thres = self.opt.iou_thres | |
else: | |
self.iou_thres = IOU_THRES | |
self.log_parameters({"val_iou_threshold": self.iou_thres, "val_conf_threshold": self.conf_thres}) | |
self.comet_log_predictions = COMET_LOG_PREDICTIONS | |
if self.opt.bbox_interval == -1: | |
self.comet_log_prediction_interval = 1 if self.opt.epochs < 10 else self.opt.epochs // 10 | |
else: | |
self.comet_log_prediction_interval = self.opt.bbox_interval | |
if self.comet_log_predictions: | |
self.metadata_dict = {} | |
self.logged_image_names = [] | |
self.comet_log_per_class_metrics = COMET_LOG_PER_CLASS_METRICS | |
self.experiment.log_others({ | |
"comet_mode": COMET_MODE, | |
"comet_max_image_uploads": COMET_MAX_IMAGE_UPLOADS, | |
"comet_log_per_class_metrics": COMET_LOG_PER_CLASS_METRICS, | |
"comet_log_batch_metrics": COMET_LOG_BATCH_METRICS, | |
"comet_log_confusion_matrix": COMET_LOG_CONFUSION_MATRIX, | |
"comet_model_name": COMET_MODEL_NAME,}) | |
# Check if running the Experiment with the Comet Optimizer | |
if hasattr(self.opt, "comet_optimizer_id"): | |
self.experiment.log_other("optimizer_id", self.opt.comet_optimizer_id) | |
self.experiment.log_other("optimizer_objective", self.opt.comet_optimizer_objective) | |
self.experiment.log_other("optimizer_metric", self.opt.comet_optimizer_metric) | |
self.experiment.log_other("optimizer_parameters", json.dumps(self.hyp)) | |
def _get_experiment(self, mode, experiment_id=None): | |
if mode == "offline": | |
if experiment_id is not None: | |
return comet_ml.ExistingOfflineExperiment( | |
previous_experiment=experiment_id, | |
**self.default_experiment_kwargs, | |
) | |
return comet_ml.OfflineExperiment(**self.default_experiment_kwargs,) | |
else: | |
try: | |
if experiment_id is not None: | |
return comet_ml.ExistingExperiment( | |
previous_experiment=experiment_id, | |
**self.default_experiment_kwargs, | |
) | |
return comet_ml.Experiment(**self.default_experiment_kwargs) | |
except ValueError: | |
logger.warning("COMET WARNING: " | |
"Comet credentials have not been set. " | |
"Comet will default to offline logging. " | |
"Please set your credentials to enable online logging.") | |
return self._get_experiment("offline", experiment_id) | |
return | |
def log_metrics(self, log_dict, **kwargs): | |
self.experiment.log_metrics(log_dict, **kwargs) | |
def log_parameters(self, log_dict, **kwargs): | |
self.experiment.log_parameters(log_dict, **kwargs) | |
def log_asset(self, asset_path, **kwargs): | |
self.experiment.log_asset(asset_path, **kwargs) | |
def log_asset_data(self, asset, **kwargs): | |
self.experiment.log_asset_data(asset, **kwargs) | |
def log_image(self, img, **kwargs): | |
self.experiment.log_image(img, **kwargs) | |
def log_model(self, path, opt, epoch, fitness_score, best_model=False): | |
if not self.save_model: | |
return | |
model_metadata = { | |
"fitness_score": fitness_score[-1], | |
"epochs_trained": epoch + 1, | |
"save_period": opt.save_period, | |
"total_epochs": opt.epochs,} | |
model_files = glob.glob(f"{path}/*.pt") | |
for model_path in model_files: | |
name = Path(model_path).name | |
self.experiment.log_model( | |
self.model_name, | |
file_or_folder=model_path, | |
file_name=name, | |
metadata=model_metadata, | |
overwrite=True, | |
) | |
def check_dataset(self, data_file): | |
with open(data_file) as f: | |
data_config = yaml.safe_load(f) | |
if data_config['path'].startswith(COMET_PREFIX): | |
path = data_config['path'].replace(COMET_PREFIX, "") | |
data_dict = self.download_dataset_artifact(path) | |
return data_dict | |
self.log_asset(self.opt.data, metadata={"type": "data-config-file"}) | |
return check_dataset(data_file) | |
def log_predictions(self, image, labelsn, path, shape, predn): | |
if self.logged_images_count >= self.max_images: | |
return | |
detections = predn[predn[:, 4] > self.conf_thres] | |
iou = box_iou(labelsn[:, 1:], detections[:, :4]) | |
mask, _ = torch.where(iou > self.iou_thres) | |
if len(mask) == 0: | |
return | |
filtered_detections = detections[mask] | |
filtered_labels = labelsn[mask] | |
image_id = path.split("/")[-1].split(".")[0] | |
image_name = f"{image_id}_curr_epoch_{self.experiment.curr_epoch}" | |
if image_name not in self.logged_image_names: | |
native_scale_image = PIL.Image.open(path) | |
self.log_image(native_scale_image, name=image_name) | |
self.logged_image_names.append(image_name) | |
metadata = [] | |
for cls, *xyxy in filtered_labels.tolist(): | |
metadata.append({ | |
"label": f"{self.class_names[int(cls)]}-gt", | |
"score": 100, | |
"box": { | |
"x": xyxy[0], | |
"y": xyxy[1], | |
"x2": xyxy[2], | |
"y2": xyxy[3]},}) | |
for *xyxy, conf, cls in filtered_detections.tolist(): | |
metadata.append({ | |
"label": f"{self.class_names[int(cls)]}", | |
"score": conf * 100, | |
"box": { | |
"x": xyxy[0], | |
"y": xyxy[1], | |
"x2": xyxy[2], | |
"y2": xyxy[3]},}) | |
self.metadata_dict[image_name] = metadata | |
self.logged_images_count += 1 | |
return | |
def preprocess_prediction(self, image, labels, shape, pred): | |
nl, _ = labels.shape[0], pred.shape[0] | |
# Predictions | |
if self.opt.single_cls: | |
pred[:, 5] = 0 | |
predn = pred.clone() | |
scale_boxes(image.shape[1:], predn[:, :4], shape[0], shape[1]) | |
labelsn = None | |
if nl: | |
tbox = xywh2xyxy(labels[:, 1:5]) # target boxes | |
scale_boxes(image.shape[1:], tbox, shape[0], shape[1]) # native-space labels | |
labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels | |
scale_boxes(image.shape[1:], predn[:, :4], shape[0], shape[1]) # native-space pred | |
return predn, labelsn | |
def add_assets_to_artifact(self, artifact, path, asset_path, split): | |
img_paths = sorted(glob.glob(f"{asset_path}/*")) | |
label_paths = img2label_paths(img_paths) | |
for image_file, label_file in zip(img_paths, label_paths): | |
image_logical_path, label_logical_path = map(lambda x: os.path.relpath(x, path), [image_file, label_file]) | |
try: | |
artifact.add(image_file, logical_path=image_logical_path, metadata={"split": split}) | |
artifact.add(label_file, logical_path=label_logical_path, metadata={"split": split}) | |
except ValueError as e: | |
logger.error('COMET ERROR: Error adding file to Artifact. Skipping file.') | |
logger.error(f"COMET ERROR: {e}") | |
continue | |
return artifact | |
def upload_dataset_artifact(self): | |
dataset_name = self.data_dict.get("dataset_name", "yolov5-dataset") | |
path = str((ROOT / Path(self.data_dict["path"])).resolve()) | |
metadata = self.data_dict.copy() | |
for key in ["train", "val", "test"]: | |
split_path = metadata.get(key) | |
if split_path is not None: | |
metadata[key] = split_path.replace(path, "") | |
artifact = comet_ml.Artifact(name=dataset_name, artifact_type="dataset", metadata=metadata) | |
for key in metadata.keys(): | |
if key in ["train", "val", "test"]: | |
if isinstance(self.upload_dataset, str) and (key != self.upload_dataset): | |
continue | |
asset_path = self.data_dict.get(key) | |
if asset_path is not None: | |
artifact = self.add_assets_to_artifact(artifact, path, asset_path, key) | |
self.experiment.log_artifact(artifact) | |
return | |
def download_dataset_artifact(self, artifact_path): | |
logged_artifact = self.experiment.get_artifact(artifact_path) | |
artifact_save_dir = str(Path(self.opt.save_dir) / logged_artifact.name) | |
logged_artifact.download(artifact_save_dir) | |
metadata = logged_artifact.metadata | |
data_dict = metadata.copy() | |
data_dict["path"] = artifact_save_dir | |
metadata_names = metadata.get("names") | |
if type(metadata_names) == dict: | |
data_dict["names"] = {int(k): v for k, v in metadata.get("names").items()} | |
elif type(metadata_names) == list: | |
data_dict["names"] = {int(k): v for k, v in zip(range(len(metadata_names)), metadata_names)} | |
else: | |
raise "Invalid 'names' field in dataset yaml file. Please use a list or dictionary" | |
data_dict = self.update_data_paths(data_dict) | |
return data_dict | |
def update_data_paths(self, data_dict): | |
path = data_dict.get("path", "") | |
for split in ["train", "val", "test"]: | |
if data_dict.get(split): | |
split_path = data_dict.get(split) | |
data_dict[split] = (f"{path}/{split_path}" if isinstance(split, str) else [ | |
f"{path}/{x}" for x in split_path]) | |
return data_dict | |
def on_pretrain_routine_end(self, paths): | |
if self.opt.resume: | |
return | |
for path in paths: | |
self.log_asset(str(path)) | |
if self.upload_dataset: | |
if not self.resume: | |
self.upload_dataset_artifact() | |
return | |
def on_train_start(self): | |
self.log_parameters(self.hyp) | |
def on_train_epoch_start(self): | |
return | |
def on_train_epoch_end(self, epoch): | |
self.experiment.curr_epoch = epoch | |
return | |
def on_train_batch_start(self): | |
return | |
def on_train_batch_end(self, log_dict, step): | |
self.experiment.curr_step = step | |
if self.log_batch_metrics and (step % self.comet_log_batch_interval == 0): | |
self.log_metrics(log_dict, step=step) | |
return | |
def on_train_end(self, files, save_dir, last, best, epoch, results): | |
if self.comet_log_predictions: | |
curr_epoch = self.experiment.curr_epoch | |
self.experiment.log_asset_data(self.metadata_dict, "image-metadata.json", epoch=curr_epoch) | |
for f in files: | |
self.log_asset(f, metadata={"epoch": epoch}) | |
self.log_asset(f"{save_dir}/results.csv", metadata={"epoch": epoch}) | |
if not self.opt.evolve: | |
model_path = str(best if best.exists() else last) | |
name = Path(model_path).name | |
if self.save_model: | |
self.experiment.log_model( | |
self.model_name, | |
file_or_folder=model_path, | |
file_name=name, | |
overwrite=True, | |
) | |
# Check if running Experiment with Comet Optimizer | |
if hasattr(self.opt, 'comet_optimizer_id'): | |
metric = results.get(self.opt.comet_optimizer_metric) | |
self.experiment.log_other('optimizer_metric_value', metric) | |
self.finish_run() | |
def on_val_start(self): | |
return | |
def on_val_batch_start(self): | |
return | |
def on_val_batch_end(self, batch_i, images, targets, paths, shapes, outputs): | |
if not (self.comet_log_predictions and ((batch_i + 1) % self.comet_log_prediction_interval == 0)): | |
return | |
for si, pred in enumerate(outputs): | |
if len(pred) == 0: | |
continue | |
image = images[si] | |
labels = targets[targets[:, 0] == si, 1:] | |
shape = shapes[si] | |
path = paths[si] | |
predn, labelsn = self.preprocess_prediction(image, labels, shape, pred) | |
if labelsn is not None: | |
self.log_predictions(image, labelsn, path, shape, predn) | |
return | |
def on_val_end(self, nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix): | |
if self.comet_log_per_class_metrics: | |
if self.num_classes > 1: | |
for i, c in enumerate(ap_class): | |
class_name = self.class_names[c] | |
self.experiment.log_metrics( | |
{ | |
'mAP@.5': ap50[i], | |
'mAP@.5:.95': ap[i], | |
'precision': p[i], | |
'recall': r[i], | |
'f1': f1[i], | |
'true_positives': tp[i], | |
'false_positives': fp[i], | |
'support': nt[c]}, | |
prefix=class_name) | |
if self.comet_log_confusion_matrix: | |
epoch = self.experiment.curr_epoch | |
class_names = list(self.class_names.values()) | |
class_names.append("background") | |
num_classes = len(class_names) | |
self.experiment.log_confusion_matrix( | |
matrix=confusion_matrix.matrix, | |
max_categories=num_classes, | |
labels=class_names, | |
epoch=epoch, | |
column_label='Actual Category', | |
row_label='Predicted Category', | |
file_name=f"confusion-matrix-epoch-{epoch}.json", | |
) | |
def on_fit_epoch_end(self, result, epoch): | |
self.log_metrics(result, epoch=epoch) | |
def on_model_save(self, last, epoch, final_epoch, best_fitness, fi): | |
if ((epoch + 1) % self.opt.save_period == 0 and not final_epoch) and self.opt.save_period != -1: | |
self.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi) | |
def on_params_update(self, params): | |
self.log_parameters(params) | |
def finish_run(self): | |
self.experiment.end() | |