Spaces:
Sleeping
Sleeping
import math | |
import os | |
import platform | |
import subprocess | |
import time | |
import warnings | |
from contextlib import contextmanager | |
from copy import deepcopy | |
from pathlib import Path | |
import torch | |
import torch.distributed as dist | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.nn.parallel import DistributedDataParallel as DDP | |
from utils.general import LOGGER, check_version, colorstr, file_date, git_describe | |
from utils.lion import Lion | |
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html | |
RANK = int(os.getenv('RANK', -1)) | |
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1)) | |
try: | |
import thop # for FLOPs computation | |
except ImportError: | |
thop = None | |
# Suppress PyTorch warnings | |
warnings.filterwarnings('ignore', message='User provided device_type of \'cuda\', but CUDA is not available. Disabling') | |
warnings.filterwarnings('ignore', category=UserWarning) | |
def smart_inference_mode(torch_1_9=check_version(torch.__version__, '1.9.0')): | |
# Applies torch.inference_mode() decorator if torch>=1.9.0 else torch.no_grad() decorator | |
def decorate(fn): | |
return (torch.inference_mode if torch_1_9 else torch.no_grad)()(fn) | |
return decorate | |
def smartCrossEntropyLoss(label_smoothing=0.0): | |
# Returns nn.CrossEntropyLoss with label smoothing enabled for torch>=1.10.0 | |
if check_version(torch.__version__, '1.10.0'): | |
return nn.CrossEntropyLoss(label_smoothing=label_smoothing) | |
if label_smoothing > 0: | |
LOGGER.warning(f'WARNING ⚠️ label smoothing {label_smoothing} requires torch>=1.10.0') | |
return nn.CrossEntropyLoss() | |
def smart_DDP(model): | |
# Model DDP creation with checks | |
assert not check_version(torch.__version__, '1.12.0', pinned=True), \ | |
'torch==1.12.0 torchvision==0.13.0 DDP training is not supported due to a known issue. ' \ | |
'Please upgrade or downgrade torch to use DDP. See https://github.com/ultralytics/yolov5/issues/8395' | |
if check_version(torch.__version__, '1.11.0'): | |
return DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK, static_graph=True) | |
else: | |
return DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK) | |
def reshape_classifier_output(model, n=1000): | |
# Update a TorchVision classification model to class count 'n' if required | |
from models.common import Classify | |
name, m = list((model.model if hasattr(model, 'model') else model).named_children())[-1] # last module | |
if isinstance(m, Classify): # YOLOv5 Classify() head | |
if m.linear.out_features != n: | |
m.linear = nn.Linear(m.linear.in_features, n) | |
elif isinstance(m, nn.Linear): # ResNet, EfficientNet | |
if m.out_features != n: | |
setattr(model, name, nn.Linear(m.in_features, n)) | |
elif isinstance(m, nn.Sequential): | |
types = [type(x) for x in m] | |
if nn.Linear in types: | |
i = types.index(nn.Linear) # nn.Linear index | |
if m[i].out_features != n: | |
m[i] = nn.Linear(m[i].in_features, n) | |
elif nn.Conv2d in types: | |
i = types.index(nn.Conv2d) # nn.Conv2d index | |
if m[i].out_channels != n: | |
m[i] = nn.Conv2d(m[i].in_channels, n, m[i].kernel_size, m[i].stride, bias=m[i].bias is not None) | |
def torch_distributed_zero_first(local_rank: int): | |
# Decorator to make all processes in distributed training wait for each local_master to do something | |
if local_rank not in [-1, 0]: | |
dist.barrier(device_ids=[local_rank]) | |
yield | |
if local_rank == 0: | |
dist.barrier(device_ids=[0]) | |
def device_count(): | |
# Returns number of CUDA devices available. Safe version of torch.cuda.device_count(). Supports Linux and Windows | |
assert platform.system() in ('Linux', 'Windows'), 'device_count() only supported on Linux or Windows' | |
try: | |
cmd = 'nvidia-smi -L | wc -l' if platform.system() == 'Linux' else 'nvidia-smi -L | find /c /v ""' # Windows | |
return int(subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]) | |
except Exception: | |
return 0 | |
def select_device(device='', batch_size=0, newline=True): | |
# device = None or 'cpu' or 0 or '0' or '0,1,2,3' | |
s = f'YOLO 🚀 {git_describe() or file_date()} Python-{platform.python_version()} torch-{torch.__version__} ' | |
device = str(device).strip().lower().replace('cuda:', '').replace('none', '') # to string, 'cuda:0' to '0' | |
cpu = device == 'cpu' | |
mps = device == 'mps' # Apple Metal Performance Shaders (MPS) | |
if cpu or mps: | |
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False | |
elif device: # non-cpu device requested | |
os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable - must be before assert is_available() | |
assert torch.cuda.is_available() and torch.cuda.device_count() >= len(device.replace(',', '')), \ | |
f"Invalid CUDA '--device {device}' requested, use '--device cpu' or pass valid CUDA device(s)" | |
if not cpu and not mps and torch.cuda.is_available(): # prefer GPU if available | |
devices = device.split(',') if device else '0' # range(torch.cuda.device_count()) # i.e. 0,1,6,7 | |
n = len(devices) # device count | |
if n > 1 and batch_size > 0: # check batch_size is divisible by device_count | |
assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}' | |
space = ' ' * (len(s) + 1) | |
for i, d in enumerate(devices): | |
p = torch.cuda.get_device_properties(i) | |
s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / (1 << 20):.0f}MiB)\n" # bytes to MB | |
arg = 'cuda:0' | |
elif mps and getattr(torch, 'has_mps', False) and torch.backends.mps.is_available(): # prefer MPS if available | |
s += 'MPS\n' | |
arg = 'mps' | |
else: # revert to CPU | |
s += 'CPU\n' | |
arg = 'cpu' | |
if not newline: | |
s = s.rstrip() | |
LOGGER.info(s) | |
return torch.device(arg) | |
def time_sync(): | |
# PyTorch-accurate time | |
if torch.cuda.is_available(): | |
torch.cuda.synchronize() | |
return time.time() | |
def profile(input, ops, n=10, device=None): | |
""" YOLOv5 speed/memory/FLOPs profiler | |
Usage: | |
input = torch.randn(16, 3, 640, 640) | |
m1 = lambda x: x * torch.sigmoid(x) | |
m2 = nn.SiLU() | |
profile(input, [m1, m2], n=100) # profile over 100 iterations | |
""" | |
results = [] | |
if not isinstance(device, torch.device): | |
device = select_device(device) | |
print(f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}" | |
f"{'input':>24s}{'output':>24s}") | |
for x in input if isinstance(input, list) else [input]: | |
x = x.to(device) | |
x.requires_grad = True | |
for m in ops if isinstance(ops, list) else [ops]: | |
m = m.to(device) if hasattr(m, 'to') else m # device | |
m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m | |
tf, tb, t = 0, 0, [0, 0, 0] # dt forward, backward | |
try: | |
flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPs | |
except Exception: | |
flops = 0 | |
try: | |
for _ in range(n): | |
t[0] = time_sync() | |
y = m(x) | |
t[1] = time_sync() | |
try: | |
_ = (sum(yi.sum() for yi in y) if isinstance(y, list) else y).sum().backward() | |
t[2] = time_sync() | |
except Exception: # no backward method | |
# print(e) # for debug | |
t[2] = float('nan') | |
tf += (t[1] - t[0]) * 1000 / n # ms per op forward | |
tb += (t[2] - t[1]) * 1000 / n # ms per op backward | |
mem = torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0 # (GB) | |
s_in, s_out = (tuple(x.shape) if isinstance(x, torch.Tensor) else 'list' for x in (x, y)) # shapes | |
p = sum(x.numel() for x in m.parameters()) if isinstance(m, nn.Module) else 0 # parameters | |
print(f'{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}') | |
results.append([p, flops, mem, tf, tb, s_in, s_out]) | |
except Exception as e: | |
print(e) | |
results.append(None) | |
torch.cuda.empty_cache() | |
return results | |
def is_parallel(model): | |
# Returns True if model is of type DP or DDP | |
return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel) | |
def de_parallel(model): | |
# De-parallelize a model: returns single-GPU model if model is of type DP or DDP | |
return model.module if is_parallel(model) else model | |
def initialize_weights(model): | |
for m in model.modules(): | |
t = type(m) | |
if t is nn.Conv2d: | |
pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | |
elif t is nn.BatchNorm2d: | |
m.eps = 1e-3 | |
m.momentum = 0.03 | |
elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]: | |
m.inplace = True | |
def find_modules(model, mclass=nn.Conv2d): | |
# Finds layer indices matching module class 'mclass' | |
return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)] | |
def sparsity(model): | |
# Return global model sparsity | |
a, b = 0, 0 | |
for p in model.parameters(): | |
a += p.numel() | |
b += (p == 0).sum() | |
return b / a | |
def prune(model, amount=0.3): | |
# Prune model to requested global sparsity | |
import torch.nn.utils.prune as prune | |
for name, m in model.named_modules(): | |
if isinstance(m, nn.Conv2d): | |
prune.l1_unstructured(m, name='weight', amount=amount) # prune | |
prune.remove(m, 'weight') # make permanent | |
LOGGER.info(f'Model pruned to {sparsity(model):.3g} global sparsity') | |
def fuse_conv_and_bn(conv, bn): | |
# Fuse Conv2d() and BatchNorm2d() layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/ | |
fusedconv = nn.Conv2d(conv.in_channels, | |
conv.out_channels, | |
kernel_size=conv.kernel_size, | |
stride=conv.stride, | |
padding=conv.padding, | |
dilation=conv.dilation, | |
groups=conv.groups, | |
bias=True).requires_grad_(False).to(conv.weight.device) | |
# Prepare filters | |
w_conv = conv.weight.clone().view(conv.out_channels, -1) | |
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var))) | |
fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape)) | |
# Prepare spatial bias | |
b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias | |
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps)) | |
fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn) | |
return fusedconv | |
def model_info(model, verbose=False, imgsz=640): | |
# Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320] | |
n_p = sum(x.numel() for x in model.parameters()) # number parameters | |
n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients | |
if verbose: | |
print(f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}") | |
for i, (name, p) in enumerate(model.named_parameters()): | |
name = name.replace('module_list.', '') | |
print('%5g %40s %9s %12g %20s %10.3g %10.3g' % | |
(i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std())) | |
try: # FLOPs | |
p = next(model.parameters()) | |
stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32 # max stride | |
im = torch.empty((1, p.shape[1], stride, stride), device=p.device) # input image in BCHW format | |
flops = thop.profile(deepcopy(model), inputs=(im,), verbose=False)[0] / 1E9 * 2 # stride GFLOPs | |
imgsz = imgsz if isinstance(imgsz, list) else [imgsz, imgsz] # expand if int/float | |
fs = f', {flops * imgsz[0] / stride * imgsz[1] / stride:.1f} GFLOPs' # 640x640 GFLOPs | |
except Exception: | |
fs = '' | |
name = Path(model.yaml_file).stem.replace('yolov5', 'YOLOv5') if hasattr(model, 'yaml_file') else 'Model' | |
LOGGER.info(f"{name} summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}") | |
def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416) | |
# Scales img(bs,3,y,x) by ratio constrained to gs-multiple | |
if ratio == 1.0: | |
return img | |
h, w = img.shape[2:] | |
s = (int(h * ratio), int(w * ratio)) # new size | |
img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize | |
if not same_shape: # pad/crop img | |
h, w = (math.ceil(x * ratio / gs) * gs for x in (h, w)) | |
return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean | |
def copy_attr(a, b, include=(), exclude=()): | |
# Copy attributes from b to a, options to only include [...] and to exclude [...] | |
for k, v in b.__dict__.items(): | |
if (len(include) and k not in include) or k.startswith('_') or k in exclude: | |
continue | |
else: | |
setattr(a, k, v) | |
def smart_optimizer(model, name='Adam', lr=0.001, momentum=0.9, decay=1e-5): | |
# YOLOv5 3-param group optimizer: 0) weights with decay, 1) weights no decay, 2) biases no decay | |
g = [], [], [] # optimizer parameter groups | |
bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k) # normalization layers, i.e. BatchNorm2d() | |
#for v in model.modules(): | |
# for p_name, p in v.named_parameters(recurse=0): | |
# if p_name == 'bias': # bias (no decay) | |
# g[2].append(p) | |
# elif p_name == 'weight' and isinstance(v, bn): # weight (no decay) | |
# g[1].append(p) | |
# else: | |
# g[0].append(p) # weight (with decay) | |
for v in model.modules(): | |
if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # bias (no decay) | |
g[2].append(v.bias) | |
if isinstance(v, bn): # weight (no decay) | |
g[1].append(v.weight) | |
elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): # weight (with decay) | |
g[0].append(v.weight) | |
if hasattr(v, 'im'): | |
if hasattr(v.im, 'implicit'): | |
g[1].append(v.im.implicit) | |
else: | |
for iv in v.im: | |
g[1].append(iv.implicit) | |
if hasattr(v, 'ia'): | |
if hasattr(v.ia, 'implicit'): | |
g[1].append(v.ia.implicit) | |
else: | |
for iv in v.ia: | |
g[1].append(iv.implicit) | |
if hasattr(v, 'im2'): | |
if hasattr(v.im2, 'implicit'): | |
g[1].append(v.im2.implicit) | |
else: | |
for iv in v.im2: | |
g[1].append(iv.implicit) | |
if hasattr(v, 'ia2'): | |
if hasattr(v.ia2, 'implicit'): | |
g[1].append(v.ia2.implicit) | |
else: | |
for iv in v.ia2: | |
g[1].append(iv.implicit) | |
if hasattr(v, 'im3'): | |
if hasattr(v.im3, 'implicit'): | |
g[1].append(v.im3.implicit) | |
else: | |
for iv in v.im3: | |
g[1].append(iv.implicit) | |
if hasattr(v, 'ia3'): | |
if hasattr(v.ia3, 'implicit'): | |
g[1].append(v.ia3.implicit) | |
else: | |
for iv in v.ia3: | |
g[1].append(iv.implicit) | |
if hasattr(v, 'im4'): | |
if hasattr(v.im4, 'implicit'): | |
g[1].append(v.im4.implicit) | |
else: | |
for iv in v.im4: | |
g[1].append(iv.implicit) | |
if hasattr(v, 'ia4'): | |
if hasattr(v.ia4, 'implicit'): | |
g[1].append(v.ia4.implicit) | |
else: | |
for iv in v.ia4: | |
g[1].append(iv.implicit) | |
if hasattr(v, 'im5'): | |
if hasattr(v.im5, 'implicit'): | |
g[1].append(v.im5.implicit) | |
else: | |
for iv in v.im5: | |
g[1].append(iv.implicit) | |
if hasattr(v, 'ia5'): | |
if hasattr(v.ia5, 'implicit'): | |
g[1].append(v.ia5.implicit) | |
else: | |
for iv in v.ia5: | |
g[1].append(iv.implicit) | |
if hasattr(v, 'im6'): | |
if hasattr(v.im6, 'implicit'): | |
g[1].append(v.im6.implicit) | |
else: | |
for iv in v.im6: | |
g[1].append(iv.implicit) | |
if hasattr(v, 'ia6'): | |
if hasattr(v.ia6, 'implicit'): | |
g[1].append(v.ia6.implicit) | |
else: | |
for iv in v.ia6: | |
g[1].append(iv.implicit) | |
if hasattr(v, 'im7'): | |
if hasattr(v.im7, 'implicit'): | |
g[1].append(v.im7.implicit) | |
else: | |
for iv in v.im7: | |
g[1].append(iv.implicit) | |
if hasattr(v, 'ia7'): | |
if hasattr(v.ia7, 'implicit'): | |
g[1].append(v.ia7.implicit) | |
else: | |
for iv in v.ia7: | |
g[1].append(iv.implicit) | |
if name == 'Adam': | |
optimizer = torch.optim.Adam(g[2], lr=lr, betas=(momentum, 0.999)) # adjust beta1 to momentum | |
elif name == 'AdamW': | |
optimizer = torch.optim.AdamW(g[2], lr=lr, betas=(momentum, 0.999), weight_decay=0.0, amsgrad=True) | |
elif name == 'RMSProp': | |
optimizer = torch.optim.RMSprop(g[2], lr=lr, momentum=momentum) | |
elif name == 'SGD': | |
optimizer = torch.optim.SGD(g[2], lr=lr, momentum=momentum, nesterov=True) | |
elif name == 'LION': | |
optimizer = Lion(g[2], lr=lr, betas=(momentum, 0.99), weight_decay=0.0) | |
else: | |
raise NotImplementedError(f'Optimizer {name} not implemented.') | |
optimizer.add_param_group({'params': g[0], 'weight_decay': decay}) # add g0 with weight_decay | |
optimizer.add_param_group({'params': g[1], 'weight_decay': 0.0}) # add g1 (BatchNorm2d weights) | |
LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__}(lr={lr}) with parameter groups " | |
f"{len(g[1])} weight(decay=0.0), {len(g[0])} weight(decay={decay}), {len(g[2])} bias") | |
return optimizer | |
def smart_hub_load(repo='ultralytics/yolov5', model='yolov5s', **kwargs): | |
# YOLOv5 torch.hub.load() wrapper with smart error/issue handling | |
if check_version(torch.__version__, '1.9.1'): | |
kwargs['skip_validation'] = True # validation causes GitHub API rate limit errors | |
if check_version(torch.__version__, '1.12.0'): | |
kwargs['trust_repo'] = True # argument required starting in torch 0.12 | |
try: | |
return torch.hub.load(repo, model, **kwargs) | |
except Exception: | |
return torch.hub.load(repo, model, force_reload=True, **kwargs) | |
def smart_resume(ckpt, optimizer, ema=None, weights='yolov5s.pt', epochs=300, resume=True): | |
# Resume training from a partially trained checkpoint | |
best_fitness = 0.0 | |
start_epoch = ckpt['epoch'] + 1 | |
if ckpt['optimizer'] is not None: | |
optimizer.load_state_dict(ckpt['optimizer']) # optimizer | |
best_fitness = ckpt['best_fitness'] | |
if ema and ckpt.get('ema'): | |
ema.ema.load_state_dict(ckpt['ema'].float().state_dict()) # EMA | |
ema.updates = ckpt['updates'] | |
if resume: | |
assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.\n' \ | |
f"Start a new training without --resume, i.e. 'python train.py --weights {weights}'" | |
LOGGER.info(f'Resuming training from {weights} from epoch {start_epoch} to {epochs} total epochs') | |
if epochs < start_epoch: | |
LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs.") | |
epochs += ckpt['epoch'] # finetune additional epochs | |
return best_fitness, start_epoch, epochs | |
class EarlyStopping: | |
# YOLOv5 simple early stopper | |
def __init__(self, patience=30): | |
self.best_fitness = 0.0 # i.e. mAP | |
self.best_epoch = 0 | |
self.patience = patience or float('inf') # epochs to wait after fitness stops improving to stop | |
self.possible_stop = False # possible stop may occur next epoch | |
def __call__(self, epoch, fitness): | |
if fitness >= self.best_fitness: # >= 0 to allow for early zero-fitness stage of training | |
self.best_epoch = epoch | |
self.best_fitness = fitness | |
delta = epoch - self.best_epoch # epochs without improvement | |
self.possible_stop = delta >= (self.patience - 1) # possible stop may occur next epoch | |
stop = delta >= self.patience # stop training if patience exceeded | |
if stop: | |
LOGGER.info(f'Stopping training early as no improvement observed in last {self.patience} epochs. ' | |
f'Best results observed at epoch {self.best_epoch}, best model saved as best.pt.\n' | |
f'To update EarlyStopping(patience={self.patience}) pass a new patience value, ' | |
f'i.e. `python train.py --patience 300` or use `--patience 0` to disable EarlyStopping.') | |
return stop | |
class ModelEMA: | |
""" Updated Exponential Moving Average (EMA) from https://github.com/rwightman/pytorch-image-models | |
Keeps a moving average of everything in the model state_dict (parameters and buffers) | |
For EMA details see https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage | |
""" | |
def __init__(self, model, decay=0.9999, tau=2000, updates=0): | |
# Create EMA | |
self.ema = deepcopy(de_parallel(model)).eval() # FP32 EMA | |
self.updates = updates # number of EMA updates | |
self.decay = lambda x: decay * (1 - math.exp(-x / tau)) # decay exponential ramp (to help early epochs) | |
for p in self.ema.parameters(): | |
p.requires_grad_(False) | |
def update(self, model): | |
# Update EMA parameters | |
self.updates += 1 | |
d = self.decay(self.updates) | |
msd = de_parallel(model).state_dict() # model state_dict | |
for k, v in self.ema.state_dict().items(): | |
if v.dtype.is_floating_point: # true for FP16 and FP32 | |
v *= d | |
v += (1 - d) * msd[k].detach() | |
# assert v.dtype == msd[k].dtype == torch.float32, f'{k}: EMA {v.dtype} and model {msd[k].dtype} must be FP32' | |
def update_attr(self, model, include=(), exclude=('process_group', 'reducer')): | |
# Update EMA attributes | |
copy_attr(self.ema, model, include, exclude) | |