import os from pathlib import Path import numpy as np current_dir = os.path.dirname(os.path.abspath(__file__)) ROOT = os.path.abspath(os.path.join(current_dir, os.path.pardir)) N_CLASSES = 14 CLASS_NAMES = ['Atelectasis', 'Cardiomegaly', 'Effusion', 'Infiltration', 'Mass', 'Nodule', 'Pneumonia', 'Pneumothorax', 'Consolidation', 'Edema', 'Emphysema', 'Fibrosis', 'Pleural Thickening', 'Hernia'] IMAGENET_MEAN = np.array([0.485, 0.456, 0.406]) IMAGENET_STD = np.array([0.229, 0.224, 0.225]) PATH = Path('/home/dattran/data/xray-thesis/chestX-ray14') ATTENTION_DN = 'tmp/attention' IMAGE_DN = 'images' TRAIN_CSV = 'train.csv' VAL_CSV = 'val.csv' TEST_CSV = 'test.csv' """ Below may not need any more """ # EPOCHS = 2# 100 # # BATCHES = 500 # 500 # BATCHSIZE = 32 # VALIDATE_EVERY_N_EPOCHS = 5 SCALE_FACTOR = .875 DATA_DIR = '/mnt/data/xray-thesis/data/chestX-ray14/images/' PERCENTAGE = 0.01 # percentage of data use for quick run TEST_AGUMENTED = False DISEASE_THRESHOLD = 0.5 MODEL_DIR = '/mnt/data/xray-thesis/models' LOG_DIR = 'mnt/data/xray-thesis/logs' CSV_DIR = '%s/csv' % ROOT STAT_DIR = '%s/stats' % ROOT # chexnet file CHEXNET_MODEL_NAME = '%s/chexnet_densenet.pth.tar' % MODEL_DIR CHEXNET_TRAIN_CSV = '%s/chexnet_train_list.csv' % CSV_DIR CHEXNET_VAL_CSV = '%s/chexnet_val_list.csv' % CSV_DIR CHEXNET_TEST_CSV = '%s/chexnet_test_list.csv' % CSV_DIR TRAIN_CSV = '%s/train_list.csv' % CSV_DIR VAL_CSV = '%s/val_list.csv' % CSV_DIR TEST_CSV = '%s/test_list.csv' % CSV_DIR # different model DENSENET121_DIR = '%s/densenet121' % MODEL_DIR # stat TRAIN_STAT = '%s/train.csv' % STAT_DIR TEST_STAT = '%s/test.csv' % STAT_DIR PREPROCESS = False