import torchvision import torch.nn as nn import pretrainedmodels import torch.nn.functional as F from collections import OrderedDict from constant import SCALE_FACTOR import math class Resnet(nn.Module): def __init__(self, variant): super(Resnet, self).__init__() assert variant in ['senet154', 'se_resnext101_32x4d', 'se_resnext50_32x4d', 'se_resnet152', 'se_resnet101', 'se_resnet50'] # load retrain model model = pretrainedmodels.__dict__[variant](num_classes=1000, pretrained='imagenet') self.features = nn.Sequential(OrderedDict([ ('layer0', model.layer0), ('layer1', model.layer1), ('layer2', model.layer2), ('layer3', model.layer3), ('layer4', model.layer4) ])) ''' Dropout - For SENet154: 0.2 - For SE-ResNet models: None - For SE-ResNeXt models: None ''' self.dropout = model.dropout num_ftrs = model.last_linear.in_features self.classifier = nn.Sequential( nn.Linear(num_ftrs, 14), nn.Sigmoid() ) # load other info # load other info self.mean = model.mean self.std = model.std self.input_size = model.input_size[1] # assume every input is a square image self.input_range = model.input_range self.input_space = model.input_space self.resize_size = int(math.floor(self.input_size / SCALE_FACTOR)) def forward(self, x): x = self.features(x) # 1x2048x7x7 s = x.size()[3] # 7 if input image is 224x224, 16 if input image is 512x512 x = F.avg_pool2d(x, kernel_size=s, stride=1) # 1x2048x1x1 x = x.view(x.size(0), -1) # 1x2048 x = self.classifier(x) # 1x1000 return x def extract(self, x): return self.features(x) def build(variant): net = Resnet(variant).cuda() return net architect='senet'