import math import warnings from pathlib import Path import matplotlib.pyplot as plt import numpy as np import torch from utils import TryExcept, threaded def fitness(x): # Model fitness as a weighted combination of metrics w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95] return (x[:, :4] * w).sum(1) def smooth(y, f=0.05): # Box filter of fraction f nf = round(len(y) * f * 2) // 2 + 1 # number of filter elements (must be odd) p = np.ones(nf // 2) # ones padding yp = np.concatenate((p * y[0], y, p * y[-1]), 0) # y padded return np.convolve(yp, np.ones(nf) / nf, mode='valid') # y-smoothed def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=(), eps=1e-16, prefix=""): """ Compute the average precision, given the recall and precision curves. Source: https://github.com/rafaelpadilla/Object-Detection-Metrics. # Arguments tp: True positives (nparray, nx1 or nx10). conf: Objectness value from 0-1 (nparray). pred_cls: Predicted object classes (nparray). target_cls: True object classes (nparray). plot: Plot precision-recall curve at mAP@0.5 save_dir: Plot save directory # Returns The average precision as computed in py-faster-rcnn. """ # Sort by objectness i = np.argsort(-conf) tp, conf, pred_cls = tp[i], conf[i], pred_cls[i] # Find unique classes unique_classes, nt = np.unique(target_cls, return_counts=True) nc = unique_classes.shape[0] # number of classes, number of detections # Create Precision-Recall curve and compute AP for each class px, py = np.linspace(0, 1, 1000), [] # for plotting ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000)) for ci, c in enumerate(unique_classes): i = pred_cls == c n_l = nt[ci] # number of labels n_p = i.sum() # number of predictions if n_p == 0 or n_l == 0: continue # Accumulate FPs and TPs fpc = (1 - tp[i]).cumsum(0) tpc = tp[i].cumsum(0) # Recall recall = tpc / (n_l + eps) # recall curve r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases # Precision precision = tpc / (tpc + fpc) # precision curve p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score # AP from recall-precision curve for j in range(tp.shape[1]): ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j]) if plot and j == 0: py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5 # Compute F1 (harmonic mean of precision and recall) f1 = 2 * p * r / (p + r + eps) names = [v for k, v in names.items() if k in unique_classes] # list: only classes that have data names = dict(enumerate(names)) # to dict if plot: plot_pr_curve(px, py, ap, Path(save_dir) / f'{prefix}PR_curve.png', names) plot_mc_curve(px, f1, Path(save_dir) / f'{prefix}F1_curve.png', names, ylabel='F1') plot_mc_curve(px, p, Path(save_dir) / f'{prefix}P_curve.png', names, ylabel='Precision') plot_mc_curve(px, r, Path(save_dir) / f'{prefix}R_curve.png', names, ylabel='Recall') i = smooth(f1.mean(0), 0.1).argmax() # max F1 index p, r, f1 = p[:, i], r[:, i], f1[:, i] tp = (r * nt).round() # true positives fp = (tp / (p + eps) - tp).round() # false positives return tp, fp, p, r, f1, ap, unique_classes.astype(int) def compute_ap(recall, precision): """ Compute the average precision, given the recall and precision curves # Arguments recall: The recall curve (list) precision: The precision curve (list) # Returns Average precision, precision curve, recall curve """ # Append sentinel values to beginning and end mrec = np.concatenate(([0.0], recall, [1.0])) mpre = np.concatenate(([1.0], precision, [0.0])) # Compute the precision envelope mpre = np.flip(np.maximum.accumulate(np.flip(mpre))) # Integrate area under curve method = 'interp' # methods: 'continuous', 'interp' if method == 'interp': x = np.linspace(0, 1, 101) # 101-point interp (COCO) ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate else: # 'continuous' i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve return ap, mpre, mrec class ConfusionMatrix: # Updated version of https://github.com/kaanakan/object_detection_confusion_matrix def __init__(self, nc, conf=0.25, iou_thres=0.45): self.matrix = np.zeros((nc + 1, nc + 1)) self.nc = nc # number of classes self.conf = conf self.iou_thres = iou_thres def process_batch(self, detections, labels): """ Return intersection-over-union (Jaccard index) of boxes. Both sets of boxes are expected to be in (x1, y1, x2, y2) format. Arguments: detections (Array[N, 6]), x1, y1, x2, y2, conf, class labels (Array[M, 5]), class, x1, y1, x2, y2 Returns: None, updates confusion matrix accordingly """ if detections is None: gt_classes = labels.int() for gc in gt_classes: self.matrix[self.nc, gc] += 1 # background FN return detections = detections[detections[:, 4] > self.conf] gt_classes = labels[:, 0].int() detection_classes = detections[:, 5].int() iou = box_iou(labels[:, 1:], detections[:, :4]) x = torch.where(iou > self.iou_thres) if x[0].shape[0]: matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() if x[0].shape[0] > 1: matches = matches[matches[:, 2].argsort()[::-1]] matches = matches[np.unique(matches[:, 1], return_index=True)[1]] matches = matches[matches[:, 2].argsort()[::-1]] matches = matches[np.unique(matches[:, 0], return_index=True)[1]] else: matches = np.zeros((0, 3)) n = matches.shape[0] > 0 m0, m1, _ = matches.transpose().astype(int) for i, gc in enumerate(gt_classes): j = m0 == i if n and sum(j) == 1: self.matrix[detection_classes[m1[j]], gc] += 1 # correct else: self.matrix[self.nc, gc] += 1 # true background if n: for i, dc in enumerate(detection_classes): if not any(m1 == i): self.matrix[dc, self.nc] += 1 # predicted background def matrix(self): return self.matrix def tp_fp(self): tp = self.matrix.diagonal() # true positives fp = self.matrix.sum(1) - tp # false positives # fn = self.matrix.sum(0) - tp # false negatives (missed detections) return tp[:-1], fp[:-1] # remove background class @TryExcept('WARNING ⚠️ ConfusionMatrix plot failure') def plot(self, normalize=True, save_dir='', names=()): import seaborn as sn array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1E-9) if normalize else 1) # normalize columns array[array < 0.005] = np.nan # don't annotate (would appear as 0.00) fig, ax = plt.subplots(1, 1, figsize=(12, 9), tight_layout=True) nc, nn = self.nc, len(names) # number of classes, names sn.set(font_scale=1.0 if nc < 50 else 0.8) # for label size labels = (0 < nn < 99) and (nn == nc) # apply names to ticklabels ticklabels = (names + ['background']) if labels else "auto" with warnings.catch_warnings(): warnings.simplefilter('ignore') # suppress empty matrix RuntimeWarning: All-NaN slice encountered sn.heatmap(array, ax=ax, annot=nc < 30, annot_kws={ "size": 8}, cmap='Blues', fmt='.2f', square=True, vmin=0.0, xticklabels=ticklabels, yticklabels=ticklabels).set_facecolor((1, 1, 1)) ax.set_ylabel('True') ax.set_ylabel('Predicted') ax.set_title('Confusion Matrix') fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250) plt.close(fig) def print(self): for i in range(self.nc + 1): print(' '.join(map(str, self.matrix[i]))) class WIoU_Scale: ''' monotonous: { None: origin v1 True: monotonic FM v2 False: non-monotonic FM v3 } momentum: The momentum of running mean''' iou_mean = 1. monotonous = False _momentum = 1 - 0.5 ** (1 / 7000) _is_train = True def __init__(self, iou): self.iou = iou self._update(self) @classmethod def _update(cls, self): if cls._is_train: cls.iou_mean = (1 - cls._momentum) * cls.iou_mean + \ cls._momentum * self.iou.detach().mean().item() @classmethod def _scaled_loss(cls, self, gamma=1.9, delta=3): if isinstance(self.monotonous, bool): if self.monotonous: return (self.iou.detach() / self.iou_mean).sqrt() else: beta = self.iou.detach() / self.iou_mean alpha = delta * torch.pow(gamma, beta - delta) return beta / alpha return 1 def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, MDPIoU=False, feat_h=640, feat_w=640, eps=1e-7): # Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4) # Get the coordinates of bounding boxes if xywh: # transform from xywh to xyxy (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1) w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2 b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_ b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_ else: # x1, y1, x2, y2 = box1 b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1) b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1) w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps # Intersection area inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \ (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0) # Union Area union = w1 * h1 + w2 * h2 - inter + eps # IoU iou = inter / union if CIoU or DIoU or GIoU: cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center dist ** 2 if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2) with torch.no_grad(): alpha = v / (v - iou + (1 + eps)) return iou - (rho2 / c2 + v * alpha) # CIoU return iou - rho2 / c2 # DIoU c_area = cw * ch + eps # convex area return iou - (c_area - union) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf elif MDPIoU: d1 = (b2_x1 - b1_x1) ** 2 + (b2_y1 - b1_y1) ** 2 d2 = (b2_x2 - b1_x2) ** 2 + (b2_y2 - b1_y2) ** 2 mpdiou_hw_pow = feat_h ** 2 + feat_w ** 2 return iou - d1 / mpdiou_hw_pow - d2 / mpdiou_hw_pow # MPDIoU return iou # IoU def box_iou(box1, box2, eps=1e-7): # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py """ Return intersection-over-union (Jaccard index) of boxes. Both sets of boxes are expected to be in (x1, y1, x2, y2) format. Arguments: box1 (Tensor[N, 4]) box2 (Tensor[M, 4]) Returns: iou (Tensor[N, M]): the NxM matrix containing the pairwise IoU values for every element in boxes1 and boxes2 """ # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2) (a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze(0).chunk(2, 2) inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp(0).prod(2) # IoU = inter / (area1 + area2 - inter) return inter / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - inter + eps) def bbox_ioa(box1, box2, eps=1e-7): """Returns the intersection over box2 area given box1, box2. Boxes are x1y1x2y2 box1: np.array of shape(nx4) box2: np.array of shape(mx4) returns: np.array of shape(nxm) """ # Get the coordinates of bounding boxes b1_x1, b1_y1, b1_x2, b1_y2 = box1.T b2_x1, b2_y1, b2_x2, b2_y2 = box2.T # Intersection area inter_area = (np.minimum(b1_x2[:, None], b2_x2) - np.maximum(b1_x1[:, None], b2_x1)).clip(0) * \ (np.minimum(b1_y2[:, None], b2_y2) - np.maximum(b1_y1[:, None], b2_y1)).clip(0) # box2 area box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + eps # Intersection over box2 area return inter_area / box2_area def wh_iou(wh1, wh2, eps=1e-7): # Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2 wh1 = wh1[:, None] # [N,1,2] wh2 = wh2[None] # [1,M,2] inter = torch.min(wh1, wh2).prod(2) # [N,M] return inter / (wh1.prod(2) + wh2.prod(2) - inter + eps) # iou = inter / (area1 + area2 - inter) # Plots ---------------------------------------------------------------------------------------------------------------- @threaded def plot_pr_curve(px, py, ap, save_dir=Path('pr_curve.png'), names=()): # Precision-recall curve fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True) py = np.stack(py, axis=1) if 0 < len(names) < 21: # display per-class legend if < 21 classes for i, y in enumerate(py.T): ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision) else: ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision) ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean()) ax.set_xlabel('Recall') ax.set_ylabel('Precision') ax.set_xlim(0, 1) ax.set_ylim(0, 1) ax.legend(bbox_to_anchor=(1.04, 1), loc="upper left") ax.set_title('Precision-Recall Curve') fig.savefig(save_dir, dpi=250) plt.close(fig) @threaded def plot_mc_curve(px, py, save_dir=Path('mc_curve.png'), names=(), xlabel='Confidence', ylabel='Metric'): # Metric-confidence curve fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True) if 0 < len(names) < 21: # display per-class legend if < 21 classes for i, y in enumerate(py): ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric) else: ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric) y = smooth(py.mean(0), 0.05) ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}') ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) ax.set_xlim(0, 1) ax.set_ylim(0, 1) ax.legend(bbox_to_anchor=(1.04, 1), loc="upper left") ax.set_title(f'{ylabel}-Confidence Curve') fig.savefig(save_dir, dpi=250) plt.close(fig)