File size: 8,562 Bytes
059d73d
bbb3627
 
 
059d73d
bbb3627
059d73d
bbb3627
 
059d73d
bbb3627
 
059d73d
10fd16b
059d73d
bbb3627
059d73d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbb3627
 
 
 
 
 
 
 
 
 
 
 
 
059d73d
bbb3627
 
 
 
 
059d73d
 
bbb3627
059d73d
 
 
 
 
 
bbb3627
059d73d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbb3627
 
059d73d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41423f0
059d73d
edb0177
72db6d0
 
41423f0
 
faa9e8b
edb0177
059d73d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbb3627
059d73d
 
 
 
 
 
bbb3627
059d73d
 
 
 
bbb3627
 
059d73d
 
 
 
 
 
 
 
 
bbb3627
059d73d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb7fe33
 
 
 
 
bbb3627
 
059d73d
 
 
 
 
 
 
 
bbb3627
 
 
 
 
 
 
059d73d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import os
import random
from statistics import mean
from typing import Iterator, Union, Any
import fasttext
import gradio as gr
from dotenv import load_dotenv
from httpx import Client, Timeout
from huggingface_hub import hf_hub_download
from huggingface_hub.utils import logging
from toolz import concat, groupby, valmap
from fastapi import FastAPI
from httpx import AsyncClient
from pathlib import Path

app = FastAPI()
logger = logging.get_logger(__name__)
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")


BASE_DATASETS_SERVER_URL = "https://datasets-server.huggingface.co"
DEFAULT_FAST_TEXT_MODEL = "laurievb/OpenLID"
headers = {
    "authorization": f"Bearer ${HF_TOKEN}",
}
timeout = Timeout(60, read=120)
client = Client(headers=headers, timeout=timeout)
async_client = AsyncClient(headers=headers, timeout=timeout)
# non exhaustive list of columns that might contain text which can be used for language detection
# we prefer to use columns in this order i.e. if there is a column named "text" we will use it first
TARGET_COLUMN_NAMES = {
    "text",
    "input",
    "tokens",
    "prompt",
    "instruction",
    "sentence_1",
    "question",
    "sentence2",
    "answer",
    "sentence",
    "response",
    "context",
    "query",
    "chosen",
    "rejected",
}


def datasets_server_valid_rows(hub_id: str):
    try:
        resp = client.get(f"{BASE_DATASETS_SERVER_URL}/is-valid?dataset={hub_id}")
        return resp.json()["viewer"]
    except Exception as e:
        logger.error(f"Failed to get is-valid for {hub_id}: {e}")
        return False


async def get_first_config_and_split_name(hub_id: str):
    try:
        resp = await async_client.get(
            f"https://datasets-server.huggingface.co/splits?dataset={hub_id}"
        )

        data = resp.json()
        return data["splits"][0]["config"], data["splits"][0]["split"]
    except Exception as e:
        logger.error(f"Failed to get splits for {hub_id}: {e}")
        return None


async def get_dataset_info(hub_id: str, config: str | None = None):
    if config is None:
        config = get_first_config_and_split_name(hub_id)
        if config is None:
            return None
        else:
            config = config[0]
    resp = await async_client.get(
        f"{BASE_DATASETS_SERVER_URL}/info?dataset={hub_id}&config={config}"
    )
    resp.raise_for_status()
    return resp.json()


async def get_random_rows(
    hub_id: str,
    total_length: int,
    number_of_rows: int,
    max_request_calls: int,
    config="default",
    split="train",
):
    rows = []
    rows_per_call = min(
        number_of_rows // max_request_calls, total_length // max_request_calls
    )
    rows_per_call = min(rows_per_call, 100)  # Ensure rows_per_call is not more than 100
    for _ in range(min(max_request_calls, number_of_rows // rows_per_call)):
        offset = random.randint(0, total_length - rows_per_call)
        url = f"https://datasets-server.huggingface.co/rows?dataset={hub_id}&config={config}&split={split}&offset={offset}&length={rows_per_call}"
        logger.info(f"Fetching {url}")
        print(url)
        response = await async_client.get(url)
        if response.status_code == 200:
            data = response.json()
            batch_rows = data.get("rows")
            rows.extend(batch_rows)
        else:
            print(f"Failed to fetch data: {response.status_code}")
            print(url)
        if len(rows) >= number_of_rows:
            break
    return [row.get("row") for row in rows]


def load_model(repo_id: str) -> fasttext.FastText._FastText:
    model_path = hf_hub_download(repo_id, filename="model.bin")
    return fasttext.load_model(model_path)


def yield_clean_rows(rows: Union[list[str], str], min_length: int = 3) -> Iterator[str]:
    for row in rows:
        if isinstance(row, str):
            # split on lines and remove empty lines
            line = row.split("\n")
            for line in line:
                if line:
                    yield line
        elif isinstance(row, list):
            try:
                line = " ".join(row)
                if len(line) < min_length:
                    continue
                else:
                    yield line
            except TypeError:
                continue


FASTTEXT_PREFIX_LENGTH = 9  # fasttext labels are formatted like "__label__eng_Latn"

# model = load_model(DEFAULT_FAST_TEXT_MODEL)
Path("code/models").mkdir(parents=True, exist_ok=True)
model = fasttext.load_model(
    hf_hub_download(
        "facebook/fasttext-language-identification",
        "model.bin",
        cache_dir="code/models",
        local_dir="code/models",
        local_dir_use_symlinks=False,
    )
)


def model_predict(inputs: str, k=1) -> list[dict[str, float]]:
    predictions = model.predict(inputs, k=k)
    return [
        {"label": label[FASTTEXT_PREFIX_LENGTH:], "score": prob}
        for label, prob in zip(predictions[0], predictions[1])
    ]


def get_label(x):
    return x.get("label")


def get_mean_score(preds):
    return mean([pred.get("score") for pred in preds])


def filter_by_frequency(counts_dict: dict, threshold_percent: float = 0.2):
    """Filter a dict to include items whose value is above `threshold_percent`"""
    total = sum(counts_dict.values())
    threshold = total * threshold_percent
    return {k for k, v in counts_dict.items() if v >= threshold}


def predict_rows(rows, target_column, language_threshold_percent=0.2):
    rows = (row.get(target_column) for row in rows)
    rows = (row for row in rows if row is not None)
    rows = list(yield_clean_rows(rows))
    predictions = [model_predict(row) for row in rows]
    predictions = [pred for pred in predictions if pred is not None]
    predictions = list(concat(predictions))
    predictions_by_lang = groupby(get_label, predictions)
    langues_counts = valmap(len, predictions_by_lang)
    keys_to_keep = filter_by_frequency(
        langues_counts, threshold_percent=language_threshold_percent
    )
    filtered_dict = {k: v for k, v in predictions_by_lang.items() if k in keys_to_keep}
    return {
        "predictions": dict(valmap(get_mean_score, filtered_dict)),
        "pred": predictions,
    }


@app.get("/items/{hub_id}")
async def predict_language(
    hub_id: str,
    config: str | None = None,
    split: str | None = None,
    max_request_calls: int = 10,
    number_of_rows: int = 1000,
) -> dict[Any, Any]:
    is_valid = datasets_server_valid_rows(hub_id)
    if not is_valid:
        gr.Error(f"Dataset {hub_id} is not accessible via the datasets server.")
    if not config:
        config, split = await get_first_config_and_split_name(hub_id)
    info = await get_dataset_info(hub_id, config)
    if info is None:
        gr.Error(f"Dataset {hub_id} is not accessible via the datasets server.")
    if dataset_info := info.get("dataset_info"):
        total_rows_for_split = dataset_info.get("splits").get(split).get("num_examples")
        features = dataset_info.get("features")
        column_names = set(features.keys())
        logger.info(f"Column names: {column_names}")
        if not set(column_names).intersection(TARGET_COLUMN_NAMES):
            raise gr.Error(
                f"Dataset {hub_id} {column_names} is not in any of the target columns {TARGET_COLUMN_NAMES}"
            )
        for column in TARGET_COLUMN_NAMES:
            if column in column_names:
                target_column = column
                logger.info(f"Using column {target_column} for language detection")
                break
        random_rows = await get_random_rows(
            hub_id,
            total_rows_for_split,
            number_of_rows,
            max_request_calls,
            config,
            split,
        )
        logger.info(f"Predicting language for {len(random_rows)} rows")
        predictions = predict_rows(random_rows, target_column)
        predictions["hub_id"] = hub_id
        predictions["config"] = config
        predictions["split"] = split
        return predictions


@app.get("/")
def read_root():
    return {"Hello": "World!"}


# app_title = "Dataset Language Detection"
# app_description = "Detect the language of a dataset on the Hub"
# inputs = [
#     gr.Text(label="dataset id"),
#     gr.Textbox(
#         None,
#         label="config",
#     ),
#     gr.Textbox(None, label="split"),
# ]
# interface = gr.Interface(
#     predict_language,
#     inputs=inputs,
#     outputs="json",
#     title=app_title,
#     article=app_description,
# )
# interface.queue()
# interface.launch()