File size: 3,269 Bytes
3d4323f
 
 
 
 
de66b6c
3d4323f
 
 
 
8e966ac
3d4323f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42fc253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d4323f
42fc253
 
3d4323f
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import gradio as gr
import json
import pandas as pd
import collections
import scipy.signal
import numpy as np
from functools import partial
from openwakeword.model import Model

# Load openWakeWord models
model = Model(inference_framework="onnx")

# Define function to process audio
def process_audio(audio, state=collections.defaultdict(partial(collections.deque, maxlen=60))):
    # Resample audio to 16khz if needed
    if audio[0] != 16000:
        data = scipy.signal.resample(audio[1], int(float(audio[1].shape[0])/audio[0]*16000))    
    
    # Get predictions
    for i in range(0, len(data), 1280):
        chunk = data[i:i+1280]
        if len(chunk) == 1280:
            prediction = model.predict(chunk)
        for key in prediction:
            #Fill deque with zeros if it's empty
            if len(state[key]) == 0:
                state[key].extend(np.zeros(60))
                
            # Add prediction
            state[key].append(prediction[key])
    
    # Make line plot
    dfs = []
    for key in state.keys():
        df = pd.DataFrame({"x": np.arange(len(state[key])), "y": state[key], "Model": key})
        dfs.append(df)
    
    df = pd.concat(dfs)
    plot = gr.LinePlot().update(value = df, x='x', y='y', color="Model", y_lim = (0,1), tooltip="Model",
                                width=600, height=300, x_title="Time (frames)", y_title="Model Score", color_legend_position="bottom")
    
    # Manually adjust how the legend is displayed
    tmp = json.loads(plot["value"]["plot"])
    tmp["layer"][0]['encoding']['color']['legend']["direction"] = "vertical"
    tmp["layer"][0]['encoding']['color']['legend']["columns"] = 4
    tmp["layer"][0]['encoding']['color']['legend']["labelFontSize"] = 12
    tmp["layer"][0]['encoding']['color']['legend']["titleFontSize"] = 14
    
    plot["value"]['plot'] = json.dumps(tmp)
    
    return plot, state

# Create Gradio interface and launch

desc = """
This is a demo of the pre-trained models included in the latest release
of the [openWakeWord](https://github.com/dscripka/openWakeWord) library.

Click on the "record from microphone" button below to start capturing.
The real-time scores from each model will be shown in the line plot. Hover over
each line to see the name of the corresponding model.

Different models will respond to different wake words/phrases (see [the model docs](https://github.com/dscripka/openWakeWord/tree/main/docs/models) for more details).
If everything is working properly,
you should see a spike in the score for a given model after speaking a related word/phrase. Below are some suggested phrases to try!

| Model Name | Word/Phrase |
| --- | --- |
| alexa | "alexa" |
| hey_mycroft | "hey mycroft"|
| weather | "what's the weather", "tell me today's weather" |
| x_minute_timer | "set a timer for 1 minute", "create 1 hour alarm" |

"""

gr_int = gr.Interface(
    title = "openWakeWord Live Demo",
    description = desc,
    css = ".flex {flex-direction: column} .gr-panel {width: 100%}",
    fn=process_audio,
    inputs=[
        gr.Audio(source="microphone", type="numpy", streaming=True, show_label=False), 
        "state"
    ],
    outputs=[
        gr.LinePlot(show_label=False),
        "state"
    ],
    live=True)

gr_int.launch()