import gradio as gr from transformers import LlavaProcessor, LlavaForConditionalGeneration, TextIteratorStreamer from threading import Thread import re import time from PIL import Image import torch import cv2 import spaces model_id = "llava-hf/llava-interleave-qwen-7b-hf" processor = LlavaProcessor.from_pretrained(model_id) model = LlavaForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.float16) model.to("cuda") def sample_frames(video_file, num_frames) : video = cv2.VideoCapture(video_file) total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) interval = total_frames // num_frames frames = [] for i in range(total_frames): ret, frame = video.read() pil_img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) if not ret: continue if i % interval == 0: frames.append(pil_img) video.release() return frames @spaces.GPU def bot_streaming(message, history): if message["files"]: image = message["files"][-1] else: # if there's no image uploaded for this turn, look for images in the past turns # kept inside tuples, take the last one for hist in history: if type(hist[0])==tuple: image = hist[0][0] txt = message["text"] img = message["files"] ext_buffer =f"'user\ntext': '{txt}', 'files': '{img}' assistantAnswer:" if image is None: gr.Error("You need to upload an image or video for LLaVA to work.") video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg") image_extensions = Image.registered_extensions() image_extensions = tuple([ex for ex, f in image_extensions.items()]) if image.endswith(video_extensions): image = sample_frames(image, 5) image_tokens = "" * 5 prompt = f"<|im_start|>user {image_tokens}\n{message}<|im_end|><|im_start|>assistant" elif image.endswith(image_extensions): image = Image.open(image).convert("RGB") prompt = f"<|im_start|>user \n{message}<|im_end|><|im_start|>assistant" inputs = processor(prompt, image, return_tensors="pt").to("cuda", torch.float16) streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True}) generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=100) generated_text = "" thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() buffer = "" for new_text in streamer: buffer += new_text print(buffer) generated_text_without_prompt = buffer[len(ext_buffer):] time.sleep(0.01) yield generated_text_without_prompt demo = gr.ChatInterface(fn=bot_streaming, title="LLaVA Interleave", examples=[{"text": "What is on the flower?", "files":["./bee.jpg"]}, {"text": "How to make this pastry?", "files":["./baklava.png"]}, {"text": "What type of cats are these?", "files":["./cats.mp4"]}], description="Try [LLaVA Interleave](https://huggingface.co/docs/transformers/main/en/model_doc/llava) in this demo (more specifically, the [Qwen-1.5-7B variant](https://huggingface.co/llava-hf/llava-interleave-qwen-7b-hf)). Upload an image or a video, and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error.", stop_btn="Stop Generation", multimodal=True) demo.launch(debug=True)