Spaces:
Runtime error
Runtime error
Upload 13 files
Browse files- .gitattributes +3 -0
- LICENSE +202 -0
- README.md +37 -13
- contributing.md +28 -0
- doc/cn_example.jpg +3 -0
- doc/md_example.jpg +3 -0
- doc/sa_example.jpg +0 -0
- example_image/train.png +3 -0
- pipeline_calls.py +552 -0
- requirements.txt +3 -2
- sa_handler.py +269 -0
- style_aligned_sdxl.ipynb +142 -0
- style_aligned_w_controlnet.ipynb +200 -0
- style_aligned_w_multidiffusion.ipynb +156 -0
.gitattributes
CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
doc/cn_example.jpg filter=lfs diff=lfs merge=lfs -text
|
37 |
+
doc/md_example.jpg filter=lfs diff=lfs merge=lfs -text
|
38 |
+
example_image/train.png filter=lfs diff=lfs merge=lfs -text
|
LICENSE
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
Apache License
|
3 |
+
Version 2.0, January 2004
|
4 |
+
http://www.apache.org/licenses/
|
5 |
+
|
6 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
7 |
+
|
8 |
+
1. Definitions.
|
9 |
+
|
10 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
11 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
12 |
+
|
13 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
14 |
+
the copyright owner that is granting the License.
|
15 |
+
|
16 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
17 |
+
other entities that control, are controlled by, or are under common
|
18 |
+
control with that entity. For the purposes of this definition,
|
19 |
+
"control" means (i) the power, direct or indirect, to cause the
|
20 |
+
direction or management of such entity, whether by contract or
|
21 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
22 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
23 |
+
|
24 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
25 |
+
exercising permissions granted by this License.
|
26 |
+
|
27 |
+
"Source" form shall mean the preferred form for making modifications,
|
28 |
+
including but not limited to software source code, documentation
|
29 |
+
source, and configuration files.
|
30 |
+
|
31 |
+
"Object" form shall mean any form resulting from mechanical
|
32 |
+
transformation or translation of a Source form, including but
|
33 |
+
not limited to compiled object code, generated documentation,
|
34 |
+
and conversions to other media types.
|
35 |
+
|
36 |
+
"Work" shall mean the work of authorship, whether in Source or
|
37 |
+
Object form, made available under the License, as indicated by a
|
38 |
+
copyright notice that is included in or attached to the work
|
39 |
+
(an example is provided in the Appendix below).
|
40 |
+
|
41 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
42 |
+
form, that is based on (or derived from) the Work and for which the
|
43 |
+
editorial revisions, annotations, elaborations, or other modifications
|
44 |
+
represent, as a whole, an original work of authorship. For the purposes
|
45 |
+
of this License, Derivative Works shall not include works that remain
|
46 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
47 |
+
the Work and Derivative Works thereof.
|
48 |
+
|
49 |
+
"Contribution" shall mean any work of authorship, including
|
50 |
+
the original version of the Work and any modifications or additions
|
51 |
+
to that Work or Derivative Works thereof, that is intentionally
|
52 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
53 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
54 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
55 |
+
means any form of electronic, verbal, or written communication sent
|
56 |
+
to the Licensor or its representatives, including but not limited to
|
57 |
+
communication on electronic mailing lists, source code control systems,
|
58 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
59 |
+
Licensor for the purpose of discussing and improving the Work, but
|
60 |
+
excluding communication that is conspicuously marked or otherwise
|
61 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
62 |
+
|
63 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
64 |
+
on behalf of whom a Contribution has been received by Licensor and
|
65 |
+
subsequently incorporated within the Work.
|
66 |
+
|
67 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
68 |
+
this License, each Contributor hereby grants to You a perpetual,
|
69 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
70 |
+
copyright license to reproduce, prepare Derivative Works of,
|
71 |
+
publicly display, publicly perform, sublicense, and distribute the
|
72 |
+
Work and such Derivative Works in Source or Object form.
|
73 |
+
|
74 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
75 |
+
this License, each Contributor hereby grants to You a perpetual,
|
76 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
77 |
+
(except as stated in this section) patent license to make, have made,
|
78 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
79 |
+
where such license applies only to those patent claims licensable
|
80 |
+
by such Contributor that are necessarily infringed by their
|
81 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
82 |
+
with the Work to which such Contribution(s) was submitted. If You
|
83 |
+
institute patent litigation against any entity (including a
|
84 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
85 |
+
or a Contribution incorporated within the Work constitutes direct
|
86 |
+
or contributory patent infringement, then any patent licenses
|
87 |
+
granted to You under this License for that Work shall terminate
|
88 |
+
as of the date such litigation is filed.
|
89 |
+
|
90 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
91 |
+
Work or Derivative Works thereof in any medium, with or without
|
92 |
+
modifications, and in Source or Object form, provided that You
|
93 |
+
meet the following conditions:
|
94 |
+
|
95 |
+
(a) You must give any other recipients of the Work or
|
96 |
+
Derivative Works a copy of this License; and
|
97 |
+
|
98 |
+
(b) You must cause any modified files to carry prominent notices
|
99 |
+
stating that You changed the files; and
|
100 |
+
|
101 |
+
(c) You must retain, in the Source form of any Derivative Works
|
102 |
+
that You distribute, all copyright, patent, trademark, and
|
103 |
+
attribution notices from the Source form of the Work,
|
104 |
+
excluding those notices that do not pertain to any part of
|
105 |
+
the Derivative Works; and
|
106 |
+
|
107 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
108 |
+
distribution, then any Derivative Works that You distribute must
|
109 |
+
include a readable copy of the attribution notices contained
|
110 |
+
within such NOTICE file, excluding those notices that do not
|
111 |
+
pertain to any part of the Derivative Works, in at least one
|
112 |
+
of the following places: within a NOTICE text file distributed
|
113 |
+
as part of the Derivative Works; within the Source form or
|
114 |
+
documentation, if provided along with the Derivative Works; or,
|
115 |
+
within a display generated by the Derivative Works, if and
|
116 |
+
wherever such third-party notices normally appear. The contents
|
117 |
+
of the NOTICE file are for informational purposes only and
|
118 |
+
do not modify the License. You may add Your own attribution
|
119 |
+
notices within Derivative Works that You distribute, alongside
|
120 |
+
or as an addendum to the NOTICE text from the Work, provided
|
121 |
+
that such additional attribution notices cannot be construed
|
122 |
+
as modifying the License.
|
123 |
+
|
124 |
+
You may add Your own copyright statement to Your modifications and
|
125 |
+
may provide additional or different license terms and conditions
|
126 |
+
for use, reproduction, or distribution of Your modifications, or
|
127 |
+
for any such Derivative Works as a whole, provided Your use,
|
128 |
+
reproduction, and distribution of the Work otherwise complies with
|
129 |
+
the conditions stated in this License.
|
130 |
+
|
131 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
132 |
+
any Contribution intentionally submitted for inclusion in the Work
|
133 |
+
by You to the Licensor shall be under the terms and conditions of
|
134 |
+
this License, without any additional terms or conditions.
|
135 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
136 |
+
the terms of any separate license agreement you may have executed
|
137 |
+
with Licensor regarding such Contributions.
|
138 |
+
|
139 |
+
6. Trademarks. This License does not grant permission to use the trade
|
140 |
+
names, trademarks, service marks, or product names of the Licensor,
|
141 |
+
except as required for reasonable and customary use in describing the
|
142 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
143 |
+
|
144 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
145 |
+
agreed to in writing, Licensor provides the Work (and each
|
146 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
147 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
148 |
+
implied, including, without limitation, any warranties or conditions
|
149 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
150 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
151 |
+
appropriateness of using or redistributing the Work and assume any
|
152 |
+
risks associated with Your exercise of permissions under this License.
|
153 |
+
|
154 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
155 |
+
whether in tort (including negligence), contract, or otherwise,
|
156 |
+
unless required by applicable law (such as deliberate and grossly
|
157 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
158 |
+
liable to You for damages, including any direct, indirect, special,
|
159 |
+
incidental, or consequential damages of any character arising as a
|
160 |
+
result of this License or out of the use or inability to use the
|
161 |
+
Work (including but not limited to damages for loss of goodwill,
|
162 |
+
work stoppage, computer failure or malfunction, or any and all
|
163 |
+
other commercial damages or losses), even if such Contributor
|
164 |
+
has been advised of the possibility of such damages.
|
165 |
+
|
166 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
167 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
168 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
169 |
+
or other liability obligations and/or rights consistent with this
|
170 |
+
License. However, in accepting such obligations, You may act only
|
171 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
172 |
+
of any other Contributor, and only if You agree to indemnify,
|
173 |
+
defend, and hold each Contributor harmless for any liability
|
174 |
+
incurred by, or claims asserted against, such Contributor by reason
|
175 |
+
of your accepting any such warranty or additional liability.
|
176 |
+
|
177 |
+
END OF TERMS AND CONDITIONS
|
178 |
+
|
179 |
+
APPENDIX: How to apply the Apache License to your work.
|
180 |
+
|
181 |
+
To apply the Apache License to your work, attach the following
|
182 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
183 |
+
replaced with your own identifying information. (Don't include
|
184 |
+
the brackets!) The text should be enclosed in the appropriate
|
185 |
+
comment syntax for the file format. We also recommend that a
|
186 |
+
file or class name and description of purpose be included on the
|
187 |
+
same "printed page" as the copyright notice for easier
|
188 |
+
identification within third-party archives.
|
189 |
+
|
190 |
+
Copyright [yyyy] [name of copyright owner]
|
191 |
+
|
192 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
193 |
+
you may not use this file except in compliance with the License.
|
194 |
+
You may obtain a copy of the License at
|
195 |
+
|
196 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
197 |
+
|
198 |
+
Unless required by applicable law or agreed to in writing, software
|
199 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
200 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
201 |
+
See the License for the specific language governing permissions and
|
202 |
+
limitations under the License.
|
README.md
CHANGED
@@ -1,13 +1,37 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Style Aligned Image Generation via Shared Attention
|
2 |
+
|
3 |
+
|
4 |
+
### [Project Page](https://style-aligned-gen.github.io)   [Paper](https://style-aligned-gen.github.io/data/StyleAligned.pdf)
|
5 |
+
|
6 |
+
|
7 |
+
## Setup
|
8 |
+
|
9 |
+
This code was tested with Python 3.11, [Pytorch 2.1](https://pytorch.org/) and [Diffusers 0.16](https://github.com/huggingface/diffusers).
|
10 |
+
|
11 |
+
## Examples
|
12 |
+
- See [**style_aligned_sdxl**][style_aligned] notebook for generating style aligned images using [SDXL](https://huggingface.co/docs/diffusers/using-diffusers/sdxl).
|
13 |
+
|
14 |
+
![alt text](doc/sa_example.jpg)
|
15 |
+
|
16 |
+
|
17 |
+
- See [**style_aligned_w_controlnet**][controlnet] notebook for generating style aligned and depth conditioned images using SDXL with [ControlNet-Depth](https://arxiv.org/abs/2302.05543).
|
18 |
+
|
19 |
+
![alt text](doc/cn_example.jpg)
|
20 |
+
|
21 |
+
|
22 |
+
- [**style_aligned_w_multidiffusion**][multidiffusion] can be used for generating style aligned panoramas using [SD V2](https://huggingface.co/stabilityai/stable-diffusion-2) with [MultiDiffusion](https://multidiffusion.github.io/).
|
23 |
+
|
24 |
+
![alt text](doc/md_example.jpg)
|
25 |
+
|
26 |
+
## TODOs
|
27 |
+
- [ ] Adding demo.
|
28 |
+
- [ ] StyleAligned from an input image.
|
29 |
+
- [ ] Multi-style with MultiDiffusion.
|
30 |
+
- [ ] StyleAligned with DreamBooth
|
31 |
+
|
32 |
+
## Disclaimer
|
33 |
+
This is not an officially supported Google product.
|
34 |
+
|
35 |
+
[style_aligned]: style_aligned_sdxl.ipynb
|
36 |
+
[controlnet]: style_aligned_w_controlnet.ipynb
|
37 |
+
[multidiffusion]: style_aligned_w_multidiffusion.ipynb
|
contributing.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# How to Contribute
|
2 |
+
|
3 |
+
We'd love to accept your patches and contributions to this project. There are
|
4 |
+
just a few small guidelines you need to follow.
|
5 |
+
|
6 |
+
## Contributor License Agreement
|
7 |
+
|
8 |
+
Contributions to this project must be accompanied by a Contributor License
|
9 |
+
Agreement. You (or your employer) retain the copyright to your contribution;
|
10 |
+
this simply gives us permission to use and redistribute your contributions as
|
11 |
+
part of the project. Head over to <https://cla.developers.google.com/> to see
|
12 |
+
your current agreements on file or to sign a new one.
|
13 |
+
|
14 |
+
You generally only need to submit a CLA once, so if you've already submitted one
|
15 |
+
(even if it was for a different project), you probably don't need to do it
|
16 |
+
again.
|
17 |
+
|
18 |
+
## Code Reviews
|
19 |
+
|
20 |
+
All submissions, including submissions by project members, require review. We
|
21 |
+
use GitHub pull requests for this purpose. Consult
|
22 |
+
[GitHub Help](https://help.github.com/articles/about-pull-requests/) for more
|
23 |
+
information on using pull requests.
|
24 |
+
|
25 |
+
## Community Guidelines
|
26 |
+
|
27 |
+
This project follows [Google's Open Source Community
|
28 |
+
Guidelines](https://opensource.google/conduct/).
|
doc/cn_example.jpg
ADDED
Git LFS Details
|
doc/md_example.jpg
ADDED
Git LFS Details
|
doc/sa_example.jpg
ADDED
example_image/train.png
ADDED
Git LFS Details
|
pipeline_calls.py
ADDED
@@ -0,0 +1,552 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Google LLC
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
from __future__ import annotations
|
17 |
+
from typing import Any
|
18 |
+
import torch
|
19 |
+
import numpy as np
|
20 |
+
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline
|
21 |
+
from diffusers.image_processor import PipelineImageInput
|
22 |
+
from diffusers.utils.torch_utils import is_compiled_module, is_torch_version
|
23 |
+
from transformers import DPTImageProcessor, DPTForDepthEstimation
|
24 |
+
from diffusers import StableDiffusionPanoramaPipeline
|
25 |
+
from PIL import Image
|
26 |
+
import copy
|
27 |
+
|
28 |
+
T = torch.Tensor
|
29 |
+
TN = T | None
|
30 |
+
|
31 |
+
|
32 |
+
def get_depth_map(image: Image, feature_processor: DPTImageProcessor, depth_estimator: DPTForDepthEstimation) -> Image:
|
33 |
+
image = feature_processor(images=image, return_tensors="pt").pixel_values.to("cuda")
|
34 |
+
with torch.no_grad(), torch.autocast("cuda"):
|
35 |
+
depth_map = depth_estimator(image).predicted_depth
|
36 |
+
|
37 |
+
depth_map = torch.nn.functional.interpolate(
|
38 |
+
depth_map.unsqueeze(1),
|
39 |
+
size=(1024, 1024),
|
40 |
+
mode="bicubic",
|
41 |
+
align_corners=False,
|
42 |
+
)
|
43 |
+
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
|
44 |
+
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
|
45 |
+
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
|
46 |
+
image = torch.cat([depth_map] * 3, dim=1)
|
47 |
+
|
48 |
+
image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
|
49 |
+
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
|
50 |
+
return image
|
51 |
+
|
52 |
+
|
53 |
+
def concat_zero_control(control_reisduel: T) -> T:
|
54 |
+
b = control_reisduel.shape[0] // 2
|
55 |
+
zerso_reisduel = torch.zeros_like(control_reisduel[0:1])
|
56 |
+
return torch.cat((zerso_reisduel, control_reisduel[:b], zerso_reisduel, control_reisduel[b::]))
|
57 |
+
|
58 |
+
|
59 |
+
@torch.no_grad()
|
60 |
+
def controlnet_call(
|
61 |
+
pipeline: StableDiffusionXLControlNetPipeline,
|
62 |
+
prompt: str | list[str] = None,
|
63 |
+
prompt_2: str | list[str] | None = None,
|
64 |
+
image: PipelineImageInput = None,
|
65 |
+
height: int | None = None,
|
66 |
+
width: int | None = None,
|
67 |
+
num_inference_steps: int = 50,
|
68 |
+
guidance_scale: float = 5.0,
|
69 |
+
negative_prompt: str | list[str] | None = None,
|
70 |
+
negative_prompt_2: str | list[str] | None = None,
|
71 |
+
num_images_per_prompt: int = 1,
|
72 |
+
eta: float = 0.0,
|
73 |
+
generator: torch.Generator | None = None,
|
74 |
+
latents: TN = None,
|
75 |
+
prompt_embeds: TN = None,
|
76 |
+
negative_prompt_embeds: TN = None,
|
77 |
+
pooled_prompt_embeds: TN = None,
|
78 |
+
negative_pooled_prompt_embeds: TN = None,
|
79 |
+
cross_attention_kwargs: dict[str, Any] | None = None,
|
80 |
+
controlnet_conditioning_scale: float | list[float] = 1.0,
|
81 |
+
control_guidance_start: float | list[float] = 0.0,
|
82 |
+
control_guidance_end: float | list[float] = 1.0,
|
83 |
+
original_size: tuple[int, int] = None,
|
84 |
+
crops_coords_top_left: tuple[int, int] = (0, 0),
|
85 |
+
target_size: tuple[int, int] | None = None,
|
86 |
+
negative_original_size: tuple[int, int] | None = None,
|
87 |
+
negative_crops_coords_top_left: tuple[int, int] = (0, 0),
|
88 |
+
negative_target_size:tuple[int, int] | None = None,
|
89 |
+
clip_skip: int | None = None,
|
90 |
+
) -> list[Image]:
|
91 |
+
controlnet = pipeline.controlnet._orig_mod if is_compiled_module(pipeline.controlnet) else pipeline.controlnet
|
92 |
+
|
93 |
+
# align format for control guidance
|
94 |
+
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
|
95 |
+
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
|
96 |
+
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
|
97 |
+
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
98 |
+
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
|
99 |
+
mult = 1
|
100 |
+
control_guidance_start, control_guidance_end = (
|
101 |
+
mult * [control_guidance_start],
|
102 |
+
mult * [control_guidance_end],
|
103 |
+
)
|
104 |
+
|
105 |
+
# 1. Check inputs. Raise error if not correct
|
106 |
+
pipeline.check_inputs(
|
107 |
+
prompt,
|
108 |
+
prompt_2,
|
109 |
+
image,
|
110 |
+
1,
|
111 |
+
negative_prompt,
|
112 |
+
negative_prompt_2,
|
113 |
+
prompt_embeds,
|
114 |
+
negative_prompt_embeds,
|
115 |
+
pooled_prompt_embeds,
|
116 |
+
negative_pooled_prompt_embeds,
|
117 |
+
controlnet_conditioning_scale,
|
118 |
+
control_guidance_start,
|
119 |
+
control_guidance_end,
|
120 |
+
)
|
121 |
+
|
122 |
+
pipeline._guidance_scale = guidance_scale
|
123 |
+
|
124 |
+
# 2. Define call parameters
|
125 |
+
if prompt is not None and isinstance(prompt, str):
|
126 |
+
batch_size = 1
|
127 |
+
elif prompt is not None and isinstance(prompt, list):
|
128 |
+
batch_size = len(prompt)
|
129 |
+
else:
|
130 |
+
batch_size = prompt_embeds.shape[0]
|
131 |
+
|
132 |
+
device = pipeline._execution_device
|
133 |
+
|
134 |
+
# 3. Encode input prompt
|
135 |
+
text_encoder_lora_scale = (
|
136 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
137 |
+
)
|
138 |
+
(
|
139 |
+
prompt_embeds,
|
140 |
+
negative_prompt_embeds,
|
141 |
+
pooled_prompt_embeds,
|
142 |
+
negative_pooled_prompt_embeds,
|
143 |
+
) = pipeline.encode_prompt(
|
144 |
+
prompt,
|
145 |
+
prompt_2,
|
146 |
+
device,
|
147 |
+
1,
|
148 |
+
True,
|
149 |
+
negative_prompt,
|
150 |
+
negative_prompt_2,
|
151 |
+
prompt_embeds=prompt_embeds,
|
152 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
153 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
154 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
155 |
+
lora_scale=text_encoder_lora_scale,
|
156 |
+
clip_skip=clip_skip,
|
157 |
+
)
|
158 |
+
|
159 |
+
# 4. Prepare image
|
160 |
+
if isinstance(controlnet, ControlNetModel):
|
161 |
+
image = pipeline.prepare_image(
|
162 |
+
image=image,
|
163 |
+
width=width,
|
164 |
+
height=height,
|
165 |
+
batch_size=1,
|
166 |
+
num_images_per_prompt=1,
|
167 |
+
device=device,
|
168 |
+
dtype=controlnet.dtype,
|
169 |
+
do_classifier_free_guidance=True,
|
170 |
+
guess_mode=False,
|
171 |
+
)
|
172 |
+
height, width = image.shape[-2:]
|
173 |
+
image = torch.stack([image[0]] * num_images_per_prompt + [image[1]] * num_images_per_prompt)
|
174 |
+
else:
|
175 |
+
assert False
|
176 |
+
# 5. Prepare timesteps
|
177 |
+
pipeline.scheduler.set_timesteps(num_inference_steps, device=device)
|
178 |
+
timesteps = pipeline.scheduler.timesteps
|
179 |
+
|
180 |
+
# 6. Prepare latent variables
|
181 |
+
num_channels_latents = pipeline.unet.config.in_channels
|
182 |
+
latents = pipeline.prepare_latents(
|
183 |
+
1 + num_images_per_prompt,
|
184 |
+
num_channels_latents,
|
185 |
+
height,
|
186 |
+
width,
|
187 |
+
prompt_embeds.dtype,
|
188 |
+
device,
|
189 |
+
generator,
|
190 |
+
latents,
|
191 |
+
)
|
192 |
+
|
193 |
+
# 6.5 Optionally get Guidance Scale Embedding
|
194 |
+
timestep_cond = None
|
195 |
+
|
196 |
+
# 7. Prepare extra step kwargs.
|
197 |
+
extra_step_kwargs = pipeline.prepare_extra_step_kwargs(generator, eta)
|
198 |
+
|
199 |
+
# 7.1 Create tensor stating which controlnets to keep
|
200 |
+
controlnet_keep = []
|
201 |
+
for i in range(len(timesteps)):
|
202 |
+
keeps = [
|
203 |
+
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
|
204 |
+
for s, e in zip(control_guidance_start, control_guidance_end)
|
205 |
+
]
|
206 |
+
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
|
207 |
+
|
208 |
+
# 7.2 Prepare added time ids & embeddings
|
209 |
+
if isinstance(image, list):
|
210 |
+
original_size = original_size or image[0].shape[-2:]
|
211 |
+
else:
|
212 |
+
original_size = original_size or image.shape[-2:]
|
213 |
+
target_size = target_size or (height, width)
|
214 |
+
|
215 |
+
add_text_embeds = pooled_prompt_embeds
|
216 |
+
if pipeline.text_encoder_2 is None:
|
217 |
+
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
218 |
+
else:
|
219 |
+
text_encoder_projection_dim = pipeline.text_encoder_2.config.projection_dim
|
220 |
+
|
221 |
+
add_time_ids = pipeline._get_add_time_ids(
|
222 |
+
original_size,
|
223 |
+
crops_coords_top_left,
|
224 |
+
target_size,
|
225 |
+
dtype=prompt_embeds.dtype,
|
226 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
227 |
+
)
|
228 |
+
|
229 |
+
if negative_original_size is not None and negative_target_size is not None:
|
230 |
+
negative_add_time_ids = pipeline._get_add_time_ids(
|
231 |
+
negative_original_size,
|
232 |
+
negative_crops_coords_top_left,
|
233 |
+
negative_target_size,
|
234 |
+
dtype=prompt_embeds.dtype,
|
235 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
236 |
+
)
|
237 |
+
else:
|
238 |
+
negative_add_time_ids = add_time_ids
|
239 |
+
|
240 |
+
prompt_embeds = torch.stack([prompt_embeds[0]] + [prompt_embeds[1]] * num_images_per_prompt)
|
241 |
+
negative_prompt_embeds = torch.stack([negative_prompt_embeds[0]] + [negative_prompt_embeds[1]] * num_images_per_prompt)
|
242 |
+
negative_pooled_prompt_embeds = torch.stack([negative_pooled_prompt_embeds[0]] + [negative_pooled_prompt_embeds[1]] * num_images_per_prompt)
|
243 |
+
add_text_embeds = torch.stack([add_text_embeds[0]] + [add_text_embeds[1]] * num_images_per_prompt)
|
244 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
245 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
246 |
+
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
247 |
+
|
248 |
+
prompt_embeds = prompt_embeds.to(device)
|
249 |
+
add_text_embeds = add_text_embeds.to(device)
|
250 |
+
add_time_ids = add_time_ids.to(device).repeat(1 + num_images_per_prompt, 1)
|
251 |
+
batch_size = num_images_per_prompt + 1
|
252 |
+
# 8. Denoising loop
|
253 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * pipeline.scheduler.order
|
254 |
+
is_unet_compiled = is_compiled_module(pipeline.unet)
|
255 |
+
is_controlnet_compiled = is_compiled_module(pipeline.controlnet)
|
256 |
+
is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
|
257 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
258 |
+
controlnet_prompt_embeds = torch.cat((prompt_embeds[1:batch_size], prompt_embeds[1:batch_size]))
|
259 |
+
controlnet_added_cond_kwargs = {key: torch.cat((item[1:batch_size,], item[1:batch_size])) for key, item in added_cond_kwargs.items()}
|
260 |
+
with pipeline.progress_bar(total=num_inference_steps) as progress_bar:
|
261 |
+
for i, t in enumerate(timesteps):
|
262 |
+
# Relevant thread:
|
263 |
+
# https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
|
264 |
+
if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
|
265 |
+
torch._inductor.cudagraph_mark_step_begin()
|
266 |
+
# expand the latents if we are doing classifier free guidance
|
267 |
+
latent_model_input = torch.cat([latents] * 2)
|
268 |
+
latent_model_input = pipeline.scheduler.scale_model_input(latent_model_input, t)
|
269 |
+
|
270 |
+
# controlnet(s) inference
|
271 |
+
control_model_input = torch.cat((latent_model_input[1:batch_size,], latent_model_input[batch_size+1:]))
|
272 |
+
|
273 |
+
if isinstance(controlnet_keep[i], list):
|
274 |
+
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
|
275 |
+
else:
|
276 |
+
controlnet_cond_scale = controlnet_conditioning_scale
|
277 |
+
if isinstance(controlnet_cond_scale, list):
|
278 |
+
controlnet_cond_scale = controlnet_cond_scale[0]
|
279 |
+
cond_scale = controlnet_cond_scale * controlnet_keep[i]
|
280 |
+
if cond_scale > 0:
|
281 |
+
down_block_res_samples, mid_block_res_sample = pipeline.controlnet(
|
282 |
+
control_model_input,
|
283 |
+
t,
|
284 |
+
encoder_hidden_states=controlnet_prompt_embeds,
|
285 |
+
controlnet_cond=image,
|
286 |
+
conditioning_scale=cond_scale,
|
287 |
+
guess_mode=False,
|
288 |
+
added_cond_kwargs=controlnet_added_cond_kwargs,
|
289 |
+
return_dict=False,
|
290 |
+
)
|
291 |
+
|
292 |
+
mid_block_res_sample = concat_zero_control(mid_block_res_sample)
|
293 |
+
down_block_res_samples = [concat_zero_control(down_block_res_sample) for down_block_res_sample in down_block_res_samples]
|
294 |
+
else:
|
295 |
+
mid_block_res_sample = down_block_res_samples = None
|
296 |
+
# predict the noise residual
|
297 |
+
noise_pred = pipeline.unet(
|
298 |
+
latent_model_input,
|
299 |
+
t,
|
300 |
+
encoder_hidden_states=prompt_embeds,
|
301 |
+
timestep_cond=timestep_cond,
|
302 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
303 |
+
down_block_additional_residuals=down_block_res_samples,
|
304 |
+
mid_block_additional_residual=mid_block_res_sample,
|
305 |
+
added_cond_kwargs=added_cond_kwargs,
|
306 |
+
return_dict=False,
|
307 |
+
)[0]
|
308 |
+
|
309 |
+
# perform guidance
|
310 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
311 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
312 |
+
|
313 |
+
# compute the previous noisy sample x_t -> x_t-1
|
314 |
+
latents = pipeline.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
315 |
+
|
316 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % pipeline.scheduler.order == 0):
|
317 |
+
progress_bar.update()
|
318 |
+
|
319 |
+
# manually for max memory savings
|
320 |
+
if pipeline.vae.dtype == torch.float16 and pipeline.vae.config.force_upcast:
|
321 |
+
pipeline.upcast_vae()
|
322 |
+
latents = latents.to(next(iter(pipeline.vae.post_quant_conv.parameters())).dtype)
|
323 |
+
|
324 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
325 |
+
needs_upcasting = pipeline.vae.dtype == torch.float16 and pipeline.vae.config.force_upcast
|
326 |
+
|
327 |
+
if needs_upcasting:
|
328 |
+
pipeline.upcast_vae()
|
329 |
+
latents = latents.to(next(iter(pipeline.vae.post_quant_conv.parameters())).dtype)
|
330 |
+
|
331 |
+
image = pipeline.vae.decode(latents / pipeline.vae.config.scaling_factor, return_dict=False)[0]
|
332 |
+
|
333 |
+
# cast back to fp16 if needed
|
334 |
+
if needs_upcasting:
|
335 |
+
pipeline.vae.to(dtype=torch.float16)
|
336 |
+
|
337 |
+
if pipeline.watermark is not None:
|
338 |
+
image = pipeline.watermark.apply_watermark(image)
|
339 |
+
|
340 |
+
image = pipeline.image_processor.postprocess(image, output_type='pil')
|
341 |
+
|
342 |
+
# Offload all models
|
343 |
+
pipeline.maybe_free_model_hooks()
|
344 |
+
return image
|
345 |
+
|
346 |
+
|
347 |
+
@torch.no_grad()
|
348 |
+
def panorama_call(
|
349 |
+
pipeline: StableDiffusionPanoramaPipeline,
|
350 |
+
prompt: list[str],
|
351 |
+
height: int | None = 512,
|
352 |
+
width: int | None = 2048,
|
353 |
+
num_inference_steps: int = 50,
|
354 |
+
guidance_scale: float = 7.5,
|
355 |
+
view_batch_size: int = 1,
|
356 |
+
negative_prompt: str | list[str] | None = None,
|
357 |
+
num_images_per_prompt: int | None = 1,
|
358 |
+
eta: float = 0.0,
|
359 |
+
generator: torch.Generator | None = None,
|
360 |
+
reference_latent: TN = None,
|
361 |
+
latents: TN = None,
|
362 |
+
prompt_embeds: TN = None,
|
363 |
+
negative_prompt_embeds: TN = None,
|
364 |
+
cross_attention_kwargs: dict[str, Any] | None = None,
|
365 |
+
circular_padding: bool = False,
|
366 |
+
clip_skip: int | None = None,
|
367 |
+
stride=8
|
368 |
+
) -> list[Image]:
|
369 |
+
# 0. Default height and width to unet
|
370 |
+
height = height or pipeline.unet.config.sample_size * pipeline.vae_scale_factor
|
371 |
+
width = width or pipeline.unet.config.sample_size * pipeline.vae_scale_factor
|
372 |
+
|
373 |
+
# 1. Check inputs. Raise error if not correct
|
374 |
+
pipeline.check_inputs(
|
375 |
+
prompt, height, width, 1, negative_prompt, prompt_embeds, negative_prompt_embeds
|
376 |
+
)
|
377 |
+
|
378 |
+
device = pipeline._execution_device
|
379 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
380 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
381 |
+
# corresponds to doing no classifier free guidance.
|
382 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
383 |
+
|
384 |
+
# 3. Encode input prompt
|
385 |
+
text_encoder_lora_scale = (
|
386 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
387 |
+
)
|
388 |
+
prompt_embeds, negative_prompt_embeds = pipeline.encode_prompt(
|
389 |
+
prompt,
|
390 |
+
device,
|
391 |
+
num_images_per_prompt,
|
392 |
+
do_classifier_free_guidance,
|
393 |
+
negative_prompt,
|
394 |
+
prompt_embeds=prompt_embeds,
|
395 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
396 |
+
lora_scale=text_encoder_lora_scale,
|
397 |
+
clip_skip=clip_skip,
|
398 |
+
)
|
399 |
+
# For classifier free guidance, we need to do two forward passes.
|
400 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
401 |
+
# to avoid doing two forward passes
|
402 |
+
|
403 |
+
# 4. Prepare timesteps
|
404 |
+
pipeline.scheduler.set_timesteps(num_inference_steps, device=device)
|
405 |
+
timesteps = pipeline.scheduler.timesteps
|
406 |
+
|
407 |
+
# 5. Prepare latent variables
|
408 |
+
num_channels_latents = pipeline.unet.config.in_channels
|
409 |
+
latents = pipeline.prepare_latents(
|
410 |
+
1,
|
411 |
+
num_channels_latents,
|
412 |
+
height,
|
413 |
+
width,
|
414 |
+
prompt_embeds.dtype,
|
415 |
+
device,
|
416 |
+
generator,
|
417 |
+
latents,
|
418 |
+
)
|
419 |
+
if reference_latent is None:
|
420 |
+
reference_latent = torch.randn(1, 4, pipeline.unet.config.sample_size, pipeline.unet.config.sample_size,
|
421 |
+
generator=generator)
|
422 |
+
reference_latent = reference_latent.to(device=device, dtype=pipeline.unet.dtype)
|
423 |
+
# 6. Define panorama grid and initialize views for synthesis.
|
424 |
+
# prepare batch grid
|
425 |
+
views = pipeline.get_views(height, width, circular_padding=circular_padding, stride=stride)
|
426 |
+
views_batch = [views[i: i + view_batch_size] for i in range(0, len(views), view_batch_size)]
|
427 |
+
views_scheduler_status = [copy.deepcopy(pipeline.scheduler.__dict__)] * len(views_batch)
|
428 |
+
count = torch.zeros_like(latents)
|
429 |
+
value = torch.zeros_like(latents)
|
430 |
+
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
431 |
+
extra_step_kwargs = pipeline.prepare_extra_step_kwargs(generator, eta)
|
432 |
+
|
433 |
+
# 8. Denoising loop
|
434 |
+
# Each denoising step also includes refinement of the latents with respect to the
|
435 |
+
# views.
|
436 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * pipeline.scheduler.order
|
437 |
+
|
438 |
+
negative_prompt_embeds = torch.cat([negative_prompt_embeds[:1],
|
439 |
+
*[negative_prompt_embeds[1:]] * view_batch_size]
|
440 |
+
)
|
441 |
+
prompt_embeds = torch.cat([prompt_embeds[:1],
|
442 |
+
*[prompt_embeds[1:]] * view_batch_size]
|
443 |
+
)
|
444 |
+
|
445 |
+
with pipeline.progress_bar(total=num_inference_steps) as progress_bar:
|
446 |
+
for i, t in enumerate(timesteps):
|
447 |
+
count.zero_()
|
448 |
+
value.zero_()
|
449 |
+
|
450 |
+
# generate views
|
451 |
+
# Here, we iterate through different spatial crops of the latents and denoise them. These
|
452 |
+
# denoised (latent) crops are then averaged to produce the final latent
|
453 |
+
# for the current timestep via MultiDiffusion. Please see Sec. 4.1 in the
|
454 |
+
# MultiDiffusion paper for more details: https://arxiv.org/abs/2302.08113
|
455 |
+
# Batch views denoise
|
456 |
+
for j, batch_view in enumerate(views_batch):
|
457 |
+
vb_size = len(batch_view)
|
458 |
+
# get the latents corresponding to the current view coordinates
|
459 |
+
if circular_padding:
|
460 |
+
latents_for_view = []
|
461 |
+
for h_start, h_end, w_start, w_end in batch_view:
|
462 |
+
if w_end > latents.shape[3]:
|
463 |
+
# Add circular horizontal padding
|
464 |
+
latent_view = torch.cat(
|
465 |
+
(
|
466 |
+
latents[:, :, h_start:h_end, w_start:],
|
467 |
+
latents[:, :, h_start:h_end, : w_end - latents.shape[3]],
|
468 |
+
),
|
469 |
+
dim=-1,
|
470 |
+
)
|
471 |
+
else:
|
472 |
+
latent_view = latents[:, :, h_start:h_end, w_start:w_end]
|
473 |
+
latents_for_view.append(latent_view)
|
474 |
+
latents_for_view = torch.cat(latents_for_view)
|
475 |
+
else:
|
476 |
+
latents_for_view = torch.cat(
|
477 |
+
[
|
478 |
+
latents[:, :, h_start:h_end, w_start:w_end]
|
479 |
+
for h_start, h_end, w_start, w_end in batch_view
|
480 |
+
]
|
481 |
+
)
|
482 |
+
# rematch block's scheduler status
|
483 |
+
pipeline.scheduler.__dict__.update(views_scheduler_status[j])
|
484 |
+
|
485 |
+
# expand the latents if we are doing classifier free guidance
|
486 |
+
latent_reference_plus_view = torch.cat((reference_latent, latents_for_view))
|
487 |
+
latent_model_input = latent_reference_plus_view.repeat(2, 1, 1, 1)
|
488 |
+
prompt_embeds_input = torch.cat([negative_prompt_embeds[: 1 + vb_size],
|
489 |
+
prompt_embeds[: 1 + vb_size]]
|
490 |
+
)
|
491 |
+
latent_model_input = pipeline.scheduler.scale_model_input(latent_model_input, t)
|
492 |
+
# predict the noise residual
|
493 |
+
# return
|
494 |
+
noise_pred = pipeline.unet(
|
495 |
+
latent_model_input,
|
496 |
+
t,
|
497 |
+
encoder_hidden_states=prompt_embeds_input,
|
498 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
499 |
+
).sample
|
500 |
+
|
501 |
+
# perform guidance
|
502 |
+
|
503 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
504 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
505 |
+
# compute the previous noisy sample x_t -> x_t-1
|
506 |
+
latent_reference_plus_view = pipeline.scheduler.step(
|
507 |
+
noise_pred, t, latent_reference_plus_view, **extra_step_kwargs
|
508 |
+
).prev_sample
|
509 |
+
if j == len(views_batch) - 1:
|
510 |
+
reference_latent = latent_reference_plus_view[:1]
|
511 |
+
latents_denoised_batch = latent_reference_plus_view[1:]
|
512 |
+
# save views scheduler status after sample
|
513 |
+
views_scheduler_status[j] = copy.deepcopy(pipeline.scheduler.__dict__)
|
514 |
+
|
515 |
+
# extract value from batch
|
516 |
+
for latents_view_denoised, (h_start, h_end, w_start, w_end) in zip(
|
517 |
+
latents_denoised_batch.chunk(vb_size), batch_view
|
518 |
+
):
|
519 |
+
if circular_padding and w_end > latents.shape[3]:
|
520 |
+
# Case for circular padding
|
521 |
+
value[:, :, h_start:h_end, w_start:] += latents_view_denoised[
|
522 |
+
:, :, h_start:h_end, : latents.shape[3] - w_start
|
523 |
+
]
|
524 |
+
value[:, :, h_start:h_end, : w_end - latents.shape[3]] += latents_view_denoised[
|
525 |
+
:, :, h_start:h_end,
|
526 |
+
latents.shape[3] - w_start:
|
527 |
+
]
|
528 |
+
count[:, :, h_start:h_end, w_start:] += 1
|
529 |
+
count[:, :, h_start:h_end, : w_end - latents.shape[3]] += 1
|
530 |
+
else:
|
531 |
+
value[:, :, h_start:h_end, w_start:w_end] += latents_view_denoised
|
532 |
+
count[:, :, h_start:h_end, w_start:w_end] += 1
|
533 |
+
|
534 |
+
# take the MultiDiffusion step. Eq. 5 in MultiDiffusion paper: https://arxiv.org/abs/2302.08113
|
535 |
+
latents = torch.where(count > 0, value / count, value)
|
536 |
+
|
537 |
+
# call the callback, if provided
|
538 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % pipeline.scheduler.order == 0):
|
539 |
+
progress_bar.update()
|
540 |
+
|
541 |
+
if circular_padding:
|
542 |
+
image = pipeline.decode_latents_with_padding(latents)
|
543 |
+
else:
|
544 |
+
image = pipeline.vae.decode(latents / pipeline.vae.config.scaling_factor, return_dict=False)[0]
|
545 |
+
reference_image = pipeline.vae.decode(reference_latent / pipeline.vae.config.scaling_factor, return_dict=False)[0]
|
546 |
+
# image, has_nsfw_concept = pipeline.run_safety_checker(image, device, prompt_embeds.dtype)
|
547 |
+
# reference_image, _ = pipeline.run_safety_checker(reference_image, device, prompt_embeds.dtype)
|
548 |
+
|
549 |
+
image = pipeline.image_processor.postprocess(image, output_type='pil', do_denormalize=[True])
|
550 |
+
reference_image = pipeline.image_processor.postprocess(reference_image, output_type='pil', do_denormalize=[True])
|
551 |
+
pipeline.maybe_free_model_hooks()
|
552 |
+
return reference_image + image
|
requirements.txt
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
-
diffusers
|
2 |
-
|
3 |
mediapy
|
|
|
4 |
einops
|
|
|
1 |
+
diffusers==0.16.1
|
2 |
+
transformers
|
3 |
mediapy
|
4 |
+
ipywidgets
|
5 |
einops
|
sa_handler.py
ADDED
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Google LLC
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
from __future__ import annotations
|
17 |
+
|
18 |
+
from dataclasses import dataclass
|
19 |
+
from diffusers import StableDiffusionXLPipeline
|
20 |
+
import torch
|
21 |
+
import torch.nn as nn
|
22 |
+
from torch.nn import functional as nnf
|
23 |
+
from diffusers.models import attention_processor
|
24 |
+
import einops
|
25 |
+
|
26 |
+
T = torch.Tensor
|
27 |
+
|
28 |
+
|
29 |
+
@dataclass(frozen=True)
|
30 |
+
class StyleAlignedArgs:
|
31 |
+
share_group_norm: bool = True
|
32 |
+
share_layer_norm: bool = True,
|
33 |
+
share_attention: bool = True
|
34 |
+
adain_queries: bool = True
|
35 |
+
adain_keys: bool = True
|
36 |
+
adain_values: bool = False
|
37 |
+
full_attention_share: bool = False
|
38 |
+
keys_scale: float = 1.
|
39 |
+
only_self_level: float = 0.
|
40 |
+
|
41 |
+
|
42 |
+
def expand_first(feat: T, scale=1., ) -> T:
|
43 |
+
b = feat.shape[0]
|
44 |
+
feat_style = torch.stack((feat[0], feat[b // 2])).unsqueeze(1)
|
45 |
+
if scale == 1:
|
46 |
+
feat_style = feat_style.expand(2, b // 2, *feat.shape[1:])
|
47 |
+
else:
|
48 |
+
feat_style = feat_style.repeat(1, b // 2, 1, 1, 1)
|
49 |
+
feat_style = torch.cat([feat_style[:, :1], scale * feat_style[:, 1:]], dim=1)
|
50 |
+
return feat_style.reshape(*feat.shape)
|
51 |
+
|
52 |
+
|
53 |
+
def concat_first(feat: T, dim=2, scale=1.) -> T:
|
54 |
+
feat_style = expand_first(feat, scale=scale)
|
55 |
+
return torch.cat((feat, feat_style), dim=dim)
|
56 |
+
|
57 |
+
|
58 |
+
def calc_mean_std(feat, eps: float = 1e-5) -> tuple[T, T]:
|
59 |
+
feat_std = (feat.var(dim=-2, keepdims=True) + eps).sqrt()
|
60 |
+
feat_mean = feat.mean(dim=-2, keepdims=True)
|
61 |
+
return feat_mean, feat_std
|
62 |
+
|
63 |
+
|
64 |
+
def adain(feat: T) -> T:
|
65 |
+
feat_mean, feat_std = calc_mean_std(feat)
|
66 |
+
feat_style_mean = expand_first(feat_mean)
|
67 |
+
feat_style_std = expand_first(feat_std)
|
68 |
+
feat = (feat - feat_mean) / feat_std
|
69 |
+
feat = feat * feat_style_std + feat_style_mean
|
70 |
+
return feat
|
71 |
+
|
72 |
+
|
73 |
+
class DefaultAttentionProcessor(nn.Module):
|
74 |
+
|
75 |
+
def __init__(self):
|
76 |
+
super().__init__()
|
77 |
+
self.processor = attention_processor.AttnProcessor2_0()
|
78 |
+
|
79 |
+
def __call__(self, attn: attention_processor.Attention, hidden_states, encoder_hidden_states=None,
|
80 |
+
attention_mask=None, **kwargs):
|
81 |
+
return self.processor(attn, hidden_states, encoder_hidden_states, attention_mask)
|
82 |
+
|
83 |
+
|
84 |
+
class SharedAttentionProcessor(DefaultAttentionProcessor):
|
85 |
+
|
86 |
+
def shared_call(
|
87 |
+
self,
|
88 |
+
attn: attention_processor.Attention,
|
89 |
+
hidden_states,
|
90 |
+
encoder_hidden_states=None,
|
91 |
+
attention_mask=None,
|
92 |
+
**kwargs
|
93 |
+
):
|
94 |
+
|
95 |
+
residual = hidden_states
|
96 |
+
input_ndim = hidden_states.ndim
|
97 |
+
if input_ndim == 4:
|
98 |
+
batch_size, channel, height, width = hidden_states.shape
|
99 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
100 |
+
batch_size, sequence_length, _ = (
|
101 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
102 |
+
)
|
103 |
+
|
104 |
+
if attention_mask is not None:
|
105 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
106 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
107 |
+
# (batch, heads, source_length, target_length)
|
108 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
109 |
+
|
110 |
+
if attn.group_norm is not None:
|
111 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
112 |
+
|
113 |
+
query = attn.to_q(hidden_states)
|
114 |
+
key = attn.to_k(hidden_states)
|
115 |
+
value = attn.to_v(hidden_states)
|
116 |
+
inner_dim = key.shape[-1]
|
117 |
+
head_dim = inner_dim // attn.heads
|
118 |
+
|
119 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
120 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
121 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
122 |
+
# if self.step >= self.start_inject:
|
123 |
+
if self.adain_queries:
|
124 |
+
query = adain(query)
|
125 |
+
if self.adain_keys:
|
126 |
+
key = adain(key)
|
127 |
+
if self.adain_values:
|
128 |
+
value = adain(value)
|
129 |
+
if self.share_attention:
|
130 |
+
key = concat_first(key, -2, scale=self.keys_scale)
|
131 |
+
value = concat_first(value, -2)
|
132 |
+
hidden_states = nnf.scaled_dot_product_attention(
|
133 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
134 |
+
)
|
135 |
+
else:
|
136 |
+
hidden_states = nnf.scaled_dot_product_attention(
|
137 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
138 |
+
)
|
139 |
+
# hidden_states = adain(hidden_states)
|
140 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
141 |
+
hidden_states = hidden_states.to(query.dtype)
|
142 |
+
|
143 |
+
# linear proj
|
144 |
+
hidden_states = attn.to_out[0](hidden_states)
|
145 |
+
# dropout
|
146 |
+
hidden_states = attn.to_out[1](hidden_states)
|
147 |
+
|
148 |
+
if input_ndim == 4:
|
149 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
150 |
+
|
151 |
+
if attn.residual_connection:
|
152 |
+
hidden_states = hidden_states + residual
|
153 |
+
|
154 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
155 |
+
return hidden_states
|
156 |
+
|
157 |
+
def __call__(self, attn: attention_processor.Attention, hidden_states, encoder_hidden_states=None,
|
158 |
+
attention_mask=None, **kwargs):
|
159 |
+
if self.full_attention_share:
|
160 |
+
b, n, d = hidden_states.shape
|
161 |
+
hidden_states = einops.rearrange(hidden_states, '(k b) n d -> k (b n) d', k=2)
|
162 |
+
hidden_states = super().__call__(attn, hidden_states, encoder_hidden_states=encoder_hidden_states,
|
163 |
+
attention_mask=attention_mask, **kwargs)
|
164 |
+
hidden_states = einops.rearrange(hidden_states, 'k (b n) d -> (k b) n d', n=n)
|
165 |
+
else:
|
166 |
+
hidden_states = self.shared_call(attn, hidden_states, hidden_states, attention_mask, **kwargs)
|
167 |
+
|
168 |
+
return hidden_states
|
169 |
+
|
170 |
+
def __init__(self, style_aligned_args: StyleAlignedArgs):
|
171 |
+
super().__init__()
|
172 |
+
self.share_attention = style_aligned_args.share_attention
|
173 |
+
self.adain_queries = style_aligned_args.adain_queries
|
174 |
+
self.adain_keys = style_aligned_args.adain_keys
|
175 |
+
self.adain_values = style_aligned_args.adain_values
|
176 |
+
self.full_attention_share = style_aligned_args.full_attention_share
|
177 |
+
self.keys_scale = style_aligned_args.keys_scale
|
178 |
+
|
179 |
+
|
180 |
+
def _get_switch_vec(total_num_layers, level):
|
181 |
+
if level == 0:
|
182 |
+
return torch.zeros(total_num_layers, dtype=torch.bool)
|
183 |
+
if level == 1:
|
184 |
+
return torch.ones(total_num_layers, dtype=torch.bool)
|
185 |
+
to_flip = level > .5
|
186 |
+
if to_flip:
|
187 |
+
level = 1 - level
|
188 |
+
num_switch = int(level * total_num_layers)
|
189 |
+
vec = torch.arange(total_num_layers)
|
190 |
+
vec = vec % (total_num_layers // num_switch)
|
191 |
+
vec = vec == 0
|
192 |
+
if to_flip:
|
193 |
+
vec = ~vec
|
194 |
+
return vec
|
195 |
+
|
196 |
+
|
197 |
+
def init_attention_processors(pipeline: StableDiffusionXLPipeline, style_aligned_args: StyleAlignedArgs | None = None):
|
198 |
+
attn_procs = {}
|
199 |
+
unet = pipeline.unet
|
200 |
+
number_of_self, number_of_cross = 0, 0
|
201 |
+
num_self_layers = len([name for name in unet.attn_processors.keys() if 'attn1' in name])
|
202 |
+
if style_aligned_args is None:
|
203 |
+
only_self_vec = _get_switch_vec(num_self_layers, 1)
|
204 |
+
else:
|
205 |
+
only_self_vec = _get_switch_vec(num_self_layers, style_aligned_args.only_self_level)
|
206 |
+
for i, name in enumerate(unet.attn_processors.keys()):
|
207 |
+
is_self_attention = 'attn1' in name
|
208 |
+
if is_self_attention:
|
209 |
+
number_of_self += 1
|
210 |
+
if style_aligned_args is None or only_self_vec[i // 2]:
|
211 |
+
attn_procs[name] = DefaultAttentionProcessor()
|
212 |
+
else:
|
213 |
+
attn_procs[name] = SharedAttentionProcessor(style_aligned_args)
|
214 |
+
|
215 |
+
else:
|
216 |
+
number_of_cross += 1
|
217 |
+
attn_procs[name] = DefaultAttentionProcessor()
|
218 |
+
|
219 |
+
unet.set_attn_processor(attn_procs)
|
220 |
+
|
221 |
+
|
222 |
+
def register_shared_norm(pipeline: StableDiffusionXLPipeline,
|
223 |
+
share_group_norm: bool = True,
|
224 |
+
share_layer_norm: bool = True, ):
|
225 |
+
def register_norm_forward(norm_layer: nn.GroupNorm | nn.LayerNorm) -> nn.GroupNorm | nn.LayerNorm:
|
226 |
+
if not hasattr(norm_layer, 'orig_forward'):
|
227 |
+
setattr(norm_layer, 'orig_forward', norm_layer.forward)
|
228 |
+
orig_forward = norm_layer.orig_forward
|
229 |
+
|
230 |
+
def forward_(hidden_states: T) -> T:
|
231 |
+
n = hidden_states.shape[-2]
|
232 |
+
hidden_states = concat_first(hidden_states, dim=-2)
|
233 |
+
hidden_states = orig_forward(hidden_states)
|
234 |
+
return hidden_states[..., :n, :]
|
235 |
+
|
236 |
+
norm_layer.forward = forward_
|
237 |
+
return norm_layer
|
238 |
+
|
239 |
+
def get_norm_layers(pipeline_, norm_layers_: dict[str, list[nn.GroupNorm | nn.LayerNorm]]):
|
240 |
+
if isinstance(pipeline_, nn.LayerNorm) and share_layer_norm:
|
241 |
+
norm_layers_['layer'].append(pipeline_)
|
242 |
+
if isinstance(pipeline_, nn.GroupNorm) and share_group_norm:
|
243 |
+
norm_layers_['group'].append(pipeline_)
|
244 |
+
else:
|
245 |
+
for layer in pipeline_.children():
|
246 |
+
get_norm_layers(layer, norm_layers_)
|
247 |
+
|
248 |
+
norm_layers = {'group': [], 'layer': []}
|
249 |
+
get_norm_layers(pipeline.unet, norm_layers)
|
250 |
+
return [register_norm_forward(layer) for layer in norm_layers['group']] + [register_norm_forward(layer) for layer in
|
251 |
+
norm_layers['layer']]
|
252 |
+
|
253 |
+
|
254 |
+
class Handler:
|
255 |
+
|
256 |
+
def register(self, style_aligned_args: StyleAlignedArgs, ):
|
257 |
+
self.norm_layers = register_shared_norm(self.pipeline, style_aligned_args.share_group_norm,
|
258 |
+
style_aligned_args.share_layer_norm)
|
259 |
+
init_attention_processors(self.pipeline, style_aligned_args)
|
260 |
+
|
261 |
+
def remove(self):
|
262 |
+
for layer in self.norm_layers:
|
263 |
+
layer.forward = layer.orig_forward
|
264 |
+
self.norm_layers = []
|
265 |
+
init_attention_processors(self.pipeline, None)
|
266 |
+
|
267 |
+
def __init__(self, pipeline: StableDiffusionXLPipeline):
|
268 |
+
self.pipeline = pipeline
|
269 |
+
self.norm_layers = []
|
style_aligned_sdxl.ipynb
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "a885cf5d-c525-4f5b-a8e4-f67d2f699909",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"## Copyright 2023 Google LLC"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "code",
|
13 |
+
"execution_count": null,
|
14 |
+
"id": "d891d022-8979-40d4-848f-ecb84c17f12c",
|
15 |
+
"metadata": {
|
16 |
+
"jp-MarkdownHeadingCollapsed": true
|
17 |
+
},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"# Copyright 2023 Google LLC\n",
|
21 |
+
"#\n",
|
22 |
+
"# Licensed under the Apache License, Version 2.0 (the \"License\");\n",
|
23 |
+
"# you may not use this file except in compliance with the License.\n",
|
24 |
+
"# You may obtain a copy of the License at\n",
|
25 |
+
"#\n",
|
26 |
+
"# http://www.apache.org/licenses/LICENSE-2.0\n",
|
27 |
+
"#\n",
|
28 |
+
"# Unless required by applicable law or agreed to in writing, software\n",
|
29 |
+
"# distributed under the License is distributed on an \"AS IS\" BASIS,\n",
|
30 |
+
"# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
|
31 |
+
"# See the License for the specific language governing permissions and\n",
|
32 |
+
"# limitations under the License."
|
33 |
+
]
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"cell_type": "markdown",
|
37 |
+
"id": "540d8642-c203-471c-a66d-0d43aabb0706",
|
38 |
+
"metadata": {},
|
39 |
+
"source": [
|
40 |
+
"# StyleAligned over SDXL"
|
41 |
+
]
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"cell_type": "code",
|
45 |
+
"execution_count": null,
|
46 |
+
"id": "23d54ea7-f7ab-4548-9b10-ece87216dc18",
|
47 |
+
"metadata": {},
|
48 |
+
"outputs": [],
|
49 |
+
"source": [
|
50 |
+
"from diffusers import StableDiffusionXLPipeline, DDIMScheduler\n",
|
51 |
+
"import torch\n",
|
52 |
+
"import mediapy\n",
|
53 |
+
"import sa_handler"
|
54 |
+
]
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"cell_type": "code",
|
58 |
+
"execution_count": null,
|
59 |
+
"id": "c2f6f1e6-445f-47bc-b9db-0301caeb7490",
|
60 |
+
"metadata": {
|
61 |
+
"pycharm": {
|
62 |
+
"name": "#%%\n"
|
63 |
+
}
|
64 |
+
},
|
65 |
+
"outputs": [],
|
66 |
+
"source": [
|
67 |
+
"# init models\n",
|
68 |
+
"\n",
|
69 |
+
"scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule=\"scaled_linear\", clip_sample=False,\n",
|
70 |
+
" set_alpha_to_one=False)\n",
|
71 |
+
"pipeline = StableDiffusionXLPipeline.from_pretrained(\n",
|
72 |
+
" \"stabilityai/stable-diffusion-xl-base-1.0\", torch_dtype=torch.float16, variant=\"fp16\", use_safetensors=True,\n",
|
73 |
+
" scheduler=scheduler\n",
|
74 |
+
").to(\"cuda\")\n",
|
75 |
+
"\n",
|
76 |
+
"handler = sa_handler.Handler(pipeline)\n",
|
77 |
+
"sa_args = sa_handler.StyleAlignedArgs(share_group_norm=False,\n",
|
78 |
+
" share_layer_norm=False,\n",
|
79 |
+
" share_attention=True,\n",
|
80 |
+
" adain_queries=True,\n",
|
81 |
+
" adain_keys=True,\n",
|
82 |
+
" adain_values=False,\n",
|
83 |
+
" )\n",
|
84 |
+
"\n",
|
85 |
+
"handler.register(sa_args, )"
|
86 |
+
]
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"cell_type": "code",
|
90 |
+
"execution_count": null,
|
91 |
+
"id": "5cca9256-0ce0-45c3-9cba-68c7eff1452f",
|
92 |
+
"metadata": {
|
93 |
+
"pycharm": {
|
94 |
+
"name": "#%%\n"
|
95 |
+
}
|
96 |
+
},
|
97 |
+
"outputs": [],
|
98 |
+
"source": [
|
99 |
+
"# run StyleAligned\n",
|
100 |
+
"\n",
|
101 |
+
"sets_of_prompts = [\n",
|
102 |
+
" \"a toy train. macro photo. 3d game asset\",\n",
|
103 |
+
" \"a toy airplane. macro photo. 3d game asset\",\n",
|
104 |
+
" \"a toy bicycle. macro photo. 3d game asset\",\n",
|
105 |
+
" \"a toy car. macro photo. 3d game asset\",\n",
|
106 |
+
" \"a toy boat. macro photo. 3d game asset\",\n",
|
107 |
+
"]\n",
|
108 |
+
"images = pipeline(sets_of_prompts,).images\n",
|
109 |
+
"mediapy.show_images(images)"
|
110 |
+
]
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"cell_type": "code",
|
114 |
+
"execution_count": null,
|
115 |
+
"id": "d819ad6d-0c19-411f-ba97-199909f64805",
|
116 |
+
"metadata": {},
|
117 |
+
"outputs": [],
|
118 |
+
"source": []
|
119 |
+
}
|
120 |
+
],
|
121 |
+
"metadata": {
|
122 |
+
"kernelspec": {
|
123 |
+
"display_name": "Python 3 (ipykernel)",
|
124 |
+
"language": "python",
|
125 |
+
"name": "python3"
|
126 |
+
},
|
127 |
+
"language_info": {
|
128 |
+
"codemirror_mode": {
|
129 |
+
"name": "ipython",
|
130 |
+
"version": 3
|
131 |
+
},
|
132 |
+
"file_extension": ".py",
|
133 |
+
"mimetype": "text/x-python",
|
134 |
+
"name": "python",
|
135 |
+
"nbconvert_exporter": "python",
|
136 |
+
"pygments_lexer": "ipython3",
|
137 |
+
"version": "3.11.5"
|
138 |
+
}
|
139 |
+
},
|
140 |
+
"nbformat": 4,
|
141 |
+
"nbformat_minor": 5
|
142 |
+
}
|
style_aligned_w_controlnet.ipynb
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "f86ede39-8d9f-4da9-bc12-955f2fddd484",
|
6 |
+
"metadata": {
|
7 |
+
"pycharm": {
|
8 |
+
"name": "#%% md\n"
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"source": [
|
12 |
+
"## Copyright 2023 Google LLC"
|
13 |
+
]
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"cell_type": "code",
|
17 |
+
"execution_count": null,
|
18 |
+
"id": "3f3cbf47-a52b-48b1-9bd3-3435f92f2174",
|
19 |
+
"metadata": {
|
20 |
+
"pycharm": {
|
21 |
+
"name": "#%%\n"
|
22 |
+
}
|
23 |
+
},
|
24 |
+
"outputs": [],
|
25 |
+
"source": [
|
26 |
+
"# Copyright 2023 Google LLC\n",
|
27 |
+
"#\n",
|
28 |
+
"# Licensed under the Apache License, Version 2.0 (the \"License\");\n",
|
29 |
+
"# you may not use this file except in compliance with the License.\n",
|
30 |
+
"# You may obtain a copy of the License at\n",
|
31 |
+
"#\n",
|
32 |
+
"# http://www.apache.org/licenses/LICENSE-2.0\n",
|
33 |
+
"#\n",
|
34 |
+
"# Unless required by applicable law or agreed to in writing, software\n",
|
35 |
+
"# distributed under the License is distributed on an \"AS IS\" BASIS,\n",
|
36 |
+
"# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
|
37 |
+
"# See the License for the specific language governing permissions and\n",
|
38 |
+
"# limitations under the License."
|
39 |
+
]
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"cell_type": "markdown",
|
43 |
+
"id": "22de629b-581f-4335-9e7b-f73221d8dbcb",
|
44 |
+
"metadata": {
|
45 |
+
"pycharm": {
|
46 |
+
"name": "#%% md\n"
|
47 |
+
}
|
48 |
+
},
|
49 |
+
"source": [
|
50 |
+
"# ControlNet depth with StyleAligned over SDXL"
|
51 |
+
]
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"cell_type": "code",
|
55 |
+
"execution_count": null,
|
56 |
+
"id": "486b7ebb-c483-4bf0-ace8-f8092c2d1f23",
|
57 |
+
"metadata": {
|
58 |
+
"pycharm": {
|
59 |
+
"name": "#%%\n"
|
60 |
+
}
|
61 |
+
},
|
62 |
+
"outputs": [],
|
63 |
+
"source": [
|
64 |
+
"from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL\n",
|
65 |
+
"from diffusers.utils import load_image\n",
|
66 |
+
"from transformers import DPTImageProcessor, DPTForDepthEstimation\n",
|
67 |
+
"import torch\n",
|
68 |
+
"import mediapy\n",
|
69 |
+
"import sa_handler\n",
|
70 |
+
"import pipeline_calls"
|
71 |
+
]
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"cell_type": "code",
|
75 |
+
"execution_count": null,
|
76 |
+
"id": "2a7e85e7-b5cf-45b2-946a-5ba1e4923586",
|
77 |
+
"metadata": {
|
78 |
+
"pycharm": {
|
79 |
+
"name": "#%%\n"
|
80 |
+
}
|
81 |
+
},
|
82 |
+
"outputs": [],
|
83 |
+
"source": [
|
84 |
+
"# init models\n",
|
85 |
+
"\n",
|
86 |
+
"depth_estimator = DPTForDepthEstimation.from_pretrained(\"Intel/dpt-hybrid-midas\").to(\"cuda\")\n",
|
87 |
+
"feature_processor = DPTImageProcessor.from_pretrained(\"Intel/dpt-hybrid-midas\")\n",
|
88 |
+
"\n",
|
89 |
+
"controlnet = ControlNetModel.from_pretrained(\n",
|
90 |
+
" \"diffusers/controlnet-depth-sdxl-1.0\",\n",
|
91 |
+
" variant=\"fp16\",\n",
|
92 |
+
" use_safetensors=True,\n",
|
93 |
+
" torch_dtype=torch.float16,\n",
|
94 |
+
").to(\"cuda\")\n",
|
95 |
+
"vae = AutoencoderKL.from_pretrained(\"madebyollin/sdxl-vae-fp16-fix\", torch_dtype=torch.float16).to(\"cuda\")\n",
|
96 |
+
"pipeline = StableDiffusionXLControlNetPipeline.from_pretrained(\n",
|
97 |
+
" \"stabilityai/stable-diffusion-xl-base-1.0\",\n",
|
98 |
+
" controlnet=controlnet,\n",
|
99 |
+
" vae=vae,\n",
|
100 |
+
" variant=\"fp16\",\n",
|
101 |
+
" use_safetensors=True,\n",
|
102 |
+
" torch_dtype=torch.float16,\n",
|
103 |
+
").to(\"cuda\")\n",
|
104 |
+
"pipeline.enable_model_cpu_offload()\n",
|
105 |
+
"\n",
|
106 |
+
"sa_args = sa_handler.StyleAlignedArgs(share_group_norm=False,\n",
|
107 |
+
" share_layer_norm=False,\n",
|
108 |
+
" share_attention=True,\n",
|
109 |
+
" adain_queries=True,\n",
|
110 |
+
" adain_keys=True,\n",
|
111 |
+
" adain_values=False,\n",
|
112 |
+
" )\n",
|
113 |
+
"handler = sa_handler.Handler(pipeline)\n",
|
114 |
+
"handler.register(sa_args, )"
|
115 |
+
]
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"cell_type": "code",
|
119 |
+
"execution_count": null,
|
120 |
+
"id": "94ca26b4-9061-4012-9400-8d97ef212d87",
|
121 |
+
"metadata": {
|
122 |
+
"pycharm": {
|
123 |
+
"name": "#%%\n"
|
124 |
+
}
|
125 |
+
},
|
126 |
+
"outputs": [],
|
127 |
+
"source": [
|
128 |
+
"# get depth maps\n",
|
129 |
+
"\n",
|
130 |
+
"image = load_image(\"./example_image/train.png\")\n",
|
131 |
+
"depth_image1 = pipeline_calls.get_depth_map(image, feature_processor, depth_estimator)\n",
|
132 |
+
"depth_image2 = load_image(\"./example_image/sun.png\").resize((1024, 1024))\n",
|
133 |
+
"mediapy.show_images([depth_image1, depth_image2])"
|
134 |
+
]
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"cell_type": "code",
|
138 |
+
"execution_count": null,
|
139 |
+
"id": "c8f56fe4-559f-49ff-a2d8-460dcfeb56a0",
|
140 |
+
"metadata": {
|
141 |
+
"pycharm": {
|
142 |
+
"name": "#%%\n"
|
143 |
+
}
|
144 |
+
},
|
145 |
+
"outputs": [],
|
146 |
+
"source": [
|
147 |
+
"# run ControlNet depth with StyleAligned\n",
|
148 |
+
"\n",
|
149 |
+
"reference_prompt = \"a poster in flat design style\"\n",
|
150 |
+
"target_prompts = [\"a train in flat design style\", \"the sun in flat design style\"]\n",
|
151 |
+
"controlnet_conditioning_scale = 0.8\n",
|
152 |
+
"num_images_per_prompt = 3 # adjust according to VRAM size\n",
|
153 |
+
"latents = torch.randn(1 + num_images_per_prompt, 4, 128, 128).to(pipeline.unet.dtype)\n",
|
154 |
+
"for deph_map, target_prompt in zip((depth_image1, depth_image2), target_prompts):\n",
|
155 |
+
" latents[1:] = torch.randn(num_images_per_prompt, 4, 128, 128).to(pipeline.unet.dtype)\n",
|
156 |
+
" images = pipeline_calls.controlnet_call(pipeline, [reference_prompt, target_prompt],\n",
|
157 |
+
" image=deph_map,\n",
|
158 |
+
" num_inference_steps=50,\n",
|
159 |
+
" controlnet_conditioning_scale=controlnet_conditioning_scale,\n",
|
160 |
+
" num_images_per_prompt=num_images_per_prompt,\n",
|
161 |
+
" latents=latents)\n",
|
162 |
+
" \n",
|
163 |
+
" mediapy.show_images([images[0], deph_map] + images[1:], titles=[\"reference\", \"depth\"] + [f'result {i}' for i in range(1, len(images))])\n"
|
164 |
+
]
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"cell_type": "code",
|
168 |
+
"execution_count": null,
|
169 |
+
"id": "437ba4bd-6243-486b-8ba5-3b7cd661d53a",
|
170 |
+
"metadata": {
|
171 |
+
"pycharm": {
|
172 |
+
"name": "#%%\n"
|
173 |
+
}
|
174 |
+
},
|
175 |
+
"outputs": [],
|
176 |
+
"source": []
|
177 |
+
}
|
178 |
+
],
|
179 |
+
"metadata": {
|
180 |
+
"kernelspec": {
|
181 |
+
"display_name": "Python 3 (ipykernel)",
|
182 |
+
"language": "python",
|
183 |
+
"name": "python3"
|
184 |
+
},
|
185 |
+
"language_info": {
|
186 |
+
"codemirror_mode": {
|
187 |
+
"name": "ipython",
|
188 |
+
"version": 3
|
189 |
+
},
|
190 |
+
"file_extension": ".py",
|
191 |
+
"mimetype": "text/x-python",
|
192 |
+
"name": "python",
|
193 |
+
"nbconvert_exporter": "python",
|
194 |
+
"pygments_lexer": "ipython3",
|
195 |
+
"version": "3.11.5"
|
196 |
+
}
|
197 |
+
},
|
198 |
+
"nbformat": 4,
|
199 |
+
"nbformat_minor": 5
|
200 |
+
}
|
style_aligned_w_multidiffusion.ipynb
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "50fa980f-1bae-40c1-a1f3-f5f89bef60d3",
|
6 |
+
"metadata": {
|
7 |
+
"pycharm": {
|
8 |
+
"name": "#%% md\n"
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"source": [
|
12 |
+
"## Copyright 2023 Google LLC"
|
13 |
+
]
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"cell_type": "code",
|
17 |
+
"execution_count": null,
|
18 |
+
"id": "5da5f038-057f-4475-a783-95660f98238c",
|
19 |
+
"metadata": {
|
20 |
+
"pycharm": {
|
21 |
+
"name": "#%%\n"
|
22 |
+
}
|
23 |
+
},
|
24 |
+
"outputs": [],
|
25 |
+
"source": [
|
26 |
+
"# Copyright 2023 Google LLC\n",
|
27 |
+
"#\n",
|
28 |
+
"# Licensed under the Apache License, Version 2.0 (the \"License\");\n",
|
29 |
+
"# you may not use this file except in compliance with the License.\n",
|
30 |
+
"# You may obtain a copy of the License at\n",
|
31 |
+
"#\n",
|
32 |
+
"# http://www.apache.org/licenses/LICENSE-2.0\n",
|
33 |
+
"#\n",
|
34 |
+
"# Unless required by applicable law or agreed to in writing, software\n",
|
35 |
+
"# distributed under the License is distributed on an \"AS IS\" BASIS,\n",
|
36 |
+
"# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
|
37 |
+
"# See the License for the specific language governing permissions and\n",
|
38 |
+
"# limitations under the License."
|
39 |
+
]
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"cell_type": "markdown",
|
43 |
+
"id": "c3a7c069-c441-4204-a905-59cbd9edc13a",
|
44 |
+
"metadata": {
|
45 |
+
"pycharm": {
|
46 |
+
"name": "#%% md\n"
|
47 |
+
}
|
48 |
+
},
|
49 |
+
"source": [
|
50 |
+
"# MultiDiffusion with StyleAligned over SD v2"
|
51 |
+
]
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"cell_type": "code",
|
55 |
+
"execution_count": null,
|
56 |
+
"id": "14178de7-d4c8-4881-ac1d-ff84bae57c6f",
|
57 |
+
"metadata": {
|
58 |
+
"pycharm": {
|
59 |
+
"name": "#%%\n"
|
60 |
+
}
|
61 |
+
},
|
62 |
+
"outputs": [],
|
63 |
+
"source": [
|
64 |
+
"import torch\n",
|
65 |
+
"from diffusers import StableDiffusionPanoramaPipeline, DDIMScheduler\n",
|
66 |
+
"import mediapy\n",
|
67 |
+
"import sa_handler\n",
|
68 |
+
"import pipeline_calls"
|
69 |
+
]
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"cell_type": "code",
|
73 |
+
"execution_count": null,
|
74 |
+
"id": "738cee0e-4d6e-4875-b4df-eadff6e27e7f",
|
75 |
+
"metadata": {
|
76 |
+
"pycharm": {
|
77 |
+
"name": "#%%\n"
|
78 |
+
}
|
79 |
+
},
|
80 |
+
"outputs": [],
|
81 |
+
"source": [
|
82 |
+
"# init models\n",
|
83 |
+
"model_ckpt = \"stabilityai/stable-diffusion-2-base\"\n",
|
84 |
+
"scheduler = DDIMScheduler.from_pretrained(model_ckpt, subfolder=\"scheduler\")\n",
|
85 |
+
"pipeline = StableDiffusionPanoramaPipeline.from_pretrained(\n",
|
86 |
+
" model_ckpt, scheduler=scheduler, torch_dtype=torch.float16\n",
|
87 |
+
").to(\"cuda\")\n",
|
88 |
+
"\n",
|
89 |
+
"sa_args = sa_handler.StyleAlignedArgs(share_group_norm=True,\n",
|
90 |
+
" share_layer_norm=True,\n",
|
91 |
+
" share_attention=True,\n",
|
92 |
+
" adain_queries=True,\n",
|
93 |
+
" adain_keys=True,\n",
|
94 |
+
" adain_values=False,\n",
|
95 |
+
" )\n",
|
96 |
+
"handler = sa_handler.Handler(pipeline)\n",
|
97 |
+
"handler.register(sa_args)"
|
98 |
+
]
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"cell_type": "code",
|
102 |
+
"execution_count": null,
|
103 |
+
"id": "ea61e789-2814-4820-8ae7-234c3c6640a0",
|
104 |
+
"metadata": {
|
105 |
+
"pycharm": {
|
106 |
+
"name": "#%%\n"
|
107 |
+
}
|
108 |
+
},
|
109 |
+
"outputs": [],
|
110 |
+
"source": [
|
111 |
+
"# run MultiDiffusion with StyleAligned\n",
|
112 |
+
"\n",
|
113 |
+
"reference_prompt = \"a beautiful papercut art design\"\n",
|
114 |
+
"target_prompts = [\"mountains in a beautiful papercut art design\", \"giraffes in a beautiful papercut art design\"]\n",
|
115 |
+
"view_batch_size = 25 # adjust according to VRAM size\n",
|
116 |
+
"reference_latent = torch.randn(1, 4, 64, 64,)\n",
|
117 |
+
"for target_prompt in target_prompts:\n",
|
118 |
+
" images = pipeline_calls.panorama_call(pipeline, [reference_prompt, target_prompt], reference_latent=reference_latent, view_batch_size=view_batch_size)\n",
|
119 |
+
" mediapy.show_images(images, titles=[\"reference\", \"result\"])"
|
120 |
+
]
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"cell_type": "code",
|
124 |
+
"execution_count": null,
|
125 |
+
"id": "791a9b28-f0ce-4fd0-9f3c-594281c2ae56",
|
126 |
+
"metadata": {
|
127 |
+
"pycharm": {
|
128 |
+
"name": "#%%\n"
|
129 |
+
}
|
130 |
+
},
|
131 |
+
"outputs": [],
|
132 |
+
"source": []
|
133 |
+
}
|
134 |
+
],
|
135 |
+
"metadata": {
|
136 |
+
"kernelspec": {
|
137 |
+
"display_name": "Python 3 (ipykernel)",
|
138 |
+
"language": "python",
|
139 |
+
"name": "python3"
|
140 |
+
},
|
141 |
+
"language_info": {
|
142 |
+
"codemirror_mode": {
|
143 |
+
"name": "ipython",
|
144 |
+
"version": 3
|
145 |
+
},
|
146 |
+
"file_extension": ".py",
|
147 |
+
"mimetype": "text/x-python",
|
148 |
+
"name": "python",
|
149 |
+
"nbconvert_exporter": "python",
|
150 |
+
"pygments_lexer": "ipython3",
|
151 |
+
"version": "3.11.5"
|
152 |
+
}
|
153 |
+
},
|
154 |
+
"nbformat": 4,
|
155 |
+
"nbformat_minor": 5
|
156 |
+
}
|