hungchiayu commited on
Commit
01af859
·
verified ·
1 Parent(s): df31906

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -13
app.py CHANGED
@@ -12,7 +12,7 @@ from gradio import Markdown
12
  import spaces
13
 
14
  import torch
15
- from diffusers.models.autoencoder_kl import AutoencoderKL
16
  from diffusers.models.unet_2d_condition import UNet2DConditionModel
17
  from diffusers import DiffusionPipeline,AudioPipelineOutput
18
  from transformers import CLIPTextModel, T5EncoderModel, AutoModel, T5Tokenizer, T5TokenizerFast
@@ -239,21 +239,21 @@ class Tango:
239
 
240
  tango = Tango(device="cpu")
241
 
242
- pipe = Tango2Pipeline(vae=tango.vae,
243
- text_encoder=tango.model.text_encoder,
244
- tokenizer=tango.model.tokenizer,
245
- unet=tango.model.unet,
246
- scheduler=tango.scheduler
247
- )
248
- pipe.to(device)
249
- #tango.vae.to(device_type)
250
- #tango.stft.to(device_type)
251
- #tango.model.to(device_type)
252
 
253
  @spaces.GPU(duration=60)
254
  def gradio_generate(prompt, output_format, steps, guidance):
255
- output_wave = pipe(prompt,steps,guidance) ## Using pipeliine automatically uses flash attention for torch2.0 above
256
- #output_wave = tango.generate(prompt, steps, guidance)
257
  # output_filename = f"{prompt.replace(' ', '_')}_{steps}_{guidance}"[:250] + ".wav"
258
  output_filename = "temp.wav"
259
  wavio.write(output_filename, output_wave, rate=16000, sampwidth=2)
 
12
  import spaces
13
 
14
  import torch
15
+ #from diffusers.models.autoencoder_kl import AutoencoderKL
16
  from diffusers.models.unet_2d_condition import UNet2DConditionModel
17
  from diffusers import DiffusionPipeline,AudioPipelineOutput
18
  from transformers import CLIPTextModel, T5EncoderModel, AutoModel, T5Tokenizer, T5TokenizerFast
 
239
 
240
  tango = Tango(device="cpu")
241
 
242
+ #pipe = Tango2Pipeline(vae=tango.vae,
243
+ # text_encoder=tango.model.text_encoder,
244
+ # tokenizer=tango.model.tokenizer,
245
+ # unet=tango.model.unet,
246
+ # scheduler=tango.scheduler
247
+ # )
248
+ #pipe.to(device)
249
+ tango.vae.to(device_type)
250
+ tango.stft.to(device_type)
251
+ tango.model.to(device_type)
252
 
253
  @spaces.GPU(duration=60)
254
  def gradio_generate(prompt, output_format, steps, guidance):
255
+ #output_wave = pipe(prompt,steps,guidance) ## Using pipeliine automatically uses flash attention for torch2.0 above
256
+ output_wave = tango.generate(prompt, steps, guidance)
257
  # output_filename = f"{prompt.replace(' ', '_')}_{steps}_{guidance}"[:250] + ".wav"
258
  output_filename = "temp.wav"
259
  wavio.write(output_filename, output_wave, rate=16000, sampwidth=2)