Spaces:
Running
on
Zero
Running
on
Zero
soujanyaporia
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -102,7 +102,12 @@ def gradio_generate(prompt, steps, guidance):
|
|
102 |
# Using this ChatGPT-generated description of the sound, TANGO provides superior results.
|
103 |
# <p/>
|
104 |
# """
|
105 |
-
description_text = ""
|
|
|
|
|
|
|
|
|
|
|
106 |
# Gradio input and output components
|
107 |
input_text = gr.Textbox(lines=2, label="Prompt")
|
108 |
output_audio = gr.Audio(label="Generated Audio", type="filepath")
|
@@ -114,7 +119,7 @@ gr_interface = gr.Interface(
|
|
114 |
fn=gradio_generate,
|
115 |
inputs=[input_text, denoising_steps, guidance_scale],
|
116 |
outputs=[output_audio],
|
117 |
-
title="
|
118 |
description=description_text,
|
119 |
allow_flagging=False,
|
120 |
examples=[
|
|
|
102 |
# Using this ChatGPT-generated description of the sound, TANGO provides superior results.
|
103 |
# <p/>
|
104 |
# """
|
105 |
+
description_text = """
|
106 |
+
<p><a href="https://huggingface.co/spaces/declare-lab/tango2/blob/main/app.py?duplicate=true"> <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> For faster inference without waiting in queue, you may duplicate the space and upgrade to a GPU in the settings. <br/><br/>
|
107 |
+
Generate audio using Tango2 by providing a text prompt. Tango2 was built from Tango and was trained on <a href="https://huggingface.co/datasets/declare-lab/audio-alpaca">Audio-alpaca</a>
|
108 |
+
<br/><br/> This is the demo for Tango2 for text to audio generation: <a href="https://arxiv.org/abs/2404.09956">Read our paper.</a>
|
109 |
+
<p/>
|
110 |
+
"""
|
111 |
# Gradio input and output components
|
112 |
input_text = gr.Textbox(lines=2, label="Prompt")
|
113 |
output_audio = gr.Audio(label="Generated Audio", type="filepath")
|
|
|
119 |
fn=gradio_generate,
|
120 |
inputs=[input_text, denoising_steps, guidance_scale],
|
121 |
outputs=[output_audio],
|
122 |
+
title="Tango 2: Aligning Diffusion-based Text-to-Audio Generations through Direct Preference Optimization",
|
123 |
description=description_text,
|
124 |
allow_flagging=False,
|
125 |
examples=[
|