soujanyaporia Fabrice-TIERCELIN commited on
Commit
4f6d0e9
·
verified ·
1 Parent(s): 12c08a6

Generate 3 outputs (#6)

Browse files

- Generate 3 outputs (f771a05a373c97fbfa98229ea3890894b87de7d3)


Co-authored-by: Fabrice TIERCELIN <Fabrice-TIERCELIN@users.noreply.huggingface.co>

Files changed (1) hide show
  1. app.py +17 -8
app.py CHANGED
@@ -52,13 +52,13 @@ class Tango:
52
  for i in range(0, len(lst), n):
53
  yield lst[i:i + n]
54
 
55
- def generate(self, prompt, steps=100, guidance=3, samples=1, disable_progress=True):
56
  """ Genrate audio for a single prompt string. """
57
  with torch.no_grad():
58
  latents = self.model.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress=disable_progress)
59
  mel = self.vae.decode_first_stage(latents)
60
  wave = self.vae.decode_to_waveform(mel)
61
- return wave[0]
62
 
63
  def generate_for_batch(self, prompts, steps=200, guidance=3, samples=1, batch_size=8, disable_progress=True):
64
  """ Genrate audio for a list of prompt strings. """
@@ -86,10 +86,17 @@ tango.model.to(device_type)
86
  def gradio_generate(prompt, steps, guidance):
87
  output_wave = tango.generate(prompt, steps, guidance)
88
  # output_filename = f"{prompt.replace(' ', '_')}_{steps}_{guidance}"[:250] + ".wav"
89
- output_filename = "temp.wav"
90
- wavio.write(output_filename, output_wave, rate=16000, sampwidth=2)
91
-
92
- return output_filename
 
 
 
 
 
 
 
93
 
94
  # description_text = """
95
  # <p><a href="https://huggingface.co/spaces/declare-lab/tango/blob/main/app.py?duplicate=true"> <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> For faster inference without waiting in queue, you may duplicate the space and upgrade to a GPU in the settings. <br/><br/>
@@ -118,7 +125,9 @@ Generate audio using Tango2 by providing a text prompt. Tango2 was built from Ta
118
  """
119
  # Gradio input and output components
120
  input_text = gr.Textbox(lines=2, label="Prompt")
121
- output_audio = gr.Audio(label="Generated Audio", type="filepath")
 
 
122
  denoising_steps = gr.Slider(minimum=100, maximum=200, value=100, step=1, label="Steps", interactive=True)
123
  guidance_scale = gr.Slider(minimum=1, maximum=10, value=3, step=0.1, label="Guidance Scale", interactive=True)
124
 
@@ -126,7 +135,7 @@ guidance_scale = gr.Slider(minimum=1, maximum=10, value=3, step=0.1, label="Guid
126
  gr_interface = gr.Interface(
127
  fn=gradio_generate,
128
  inputs=[input_text, denoising_steps, guidance_scale],
129
- outputs=[output_audio],
130
  title="Tango 2: Aligning Diffusion-based Text-to-Audio Generations through Direct Preference Optimization",
131
  description=description_text,
132
  allow_flagging=False,
 
52
  for i in range(0, len(lst), n):
53
  yield lst[i:i + n]
54
 
55
+ def generate(self, prompt, steps=100, guidance=3, samples=3, disable_progress=True):
56
  """ Genrate audio for a single prompt string. """
57
  with torch.no_grad():
58
  latents = self.model.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress=disable_progress)
59
  mel = self.vae.decode_first_stage(latents)
60
  wave = self.vae.decode_to_waveform(mel)
61
+ return wave
62
 
63
  def generate_for_batch(self, prompts, steps=200, guidance=3, samples=1, batch_size=8, disable_progress=True):
64
  """ Genrate audio for a list of prompt strings. """
 
86
  def gradio_generate(prompt, steps, guidance):
87
  output_wave = tango.generate(prompt, steps, guidance)
88
  # output_filename = f"{prompt.replace(' ', '_')}_{steps}_{guidance}"[:250] + ".wav"
89
+
90
+ output_filename_1 = "tmp1_.wav"
91
+ wavio.write(output_filename, output_wave[0], rate=16000, sampwidth=2)
92
+
93
+ output_filename_2 = "tmp2_.wav"
94
+ wavio.write(output_filename, output_wave[1], rate=16000, sampwidth=2)
95
+
96
+ output_filename_3 = "tmp3_.wav"
97
+ wavio.write(output_filename, output_wave[2], rate=16000, sampwidth=2)
98
+
99
+ return [output_filename_1, output_filename_2, output_filename_3]
100
 
101
  # description_text = """
102
  # <p><a href="https://huggingface.co/spaces/declare-lab/tango/blob/main/app.py?duplicate=true"> <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> For faster inference without waiting in queue, you may duplicate the space and upgrade to a GPU in the settings. <br/><br/>
 
125
  """
126
  # Gradio input and output components
127
  input_text = gr.Textbox(lines=2, label="Prompt")
128
+ output_audio_1 = gr.Audio(label="Generated Audio #1/3", type="filepath")
129
+ output_audio_2 = gr.Audio(label="Generated Audio #2/3", type="filepath")
130
+ output_audio_3 = gr.Audio(label="Generated Audio #3/3", type="filepath")
131
  denoising_steps = gr.Slider(minimum=100, maximum=200, value=100, step=1, label="Steps", interactive=True)
132
  guidance_scale = gr.Slider(minimum=1, maximum=10, value=3, step=0.1, label="Guidance Scale", interactive=True)
133
 
 
135
  gr_interface = gr.Interface(
136
  fn=gradio_generate,
137
  inputs=[input_text, denoising_steps, guidance_scale],
138
+ outputs=[output_audio_1, output_audio_2, output_audio_3],
139
  title="Tango 2: Aligning Diffusion-based Text-to-Audio Generations through Direct Preference Optimization",
140
  description=description_text,
141
  allow_flagging=False,