Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2023 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import tempfile | |
import unittest | |
import torch | |
from diffusers import UNet2DConditionModel | |
from diffusers.training_utils import EMAModel | |
from diffusers.utils.testing_utils import skip_mps, torch_device | |
class EMAModelTests(unittest.TestCase): | |
model_id = "hf-internal-testing/tiny-stable-diffusion-pipe" | |
batch_size = 1 | |
prompt_length = 77 | |
text_encoder_hidden_dim = 32 | |
num_in_channels = 4 | |
latent_height = latent_width = 64 | |
generator = torch.manual_seed(0) | |
def get_models(self, decay=0.9999): | |
unet = UNet2DConditionModel.from_pretrained(self.model_id, subfolder="unet") | |
unet = unet.to(torch_device) | |
ema_unet = EMAModel(unet.parameters(), decay=decay, model_cls=UNet2DConditionModel, model_config=unet.config) | |
return unet, ema_unet | |
def get_dummy_inputs(self): | |
noisy_latents = torch.randn( | |
self.batch_size, self.num_in_channels, self.latent_height, self.latent_width, generator=self.generator | |
).to(torch_device) | |
timesteps = torch.randint(0, 1000, size=(self.batch_size,), generator=self.generator).to(torch_device) | |
encoder_hidden_states = torch.randn( | |
self.batch_size, self.prompt_length, self.text_encoder_hidden_dim, generator=self.generator | |
).to(torch_device) | |
return noisy_latents, timesteps, encoder_hidden_states | |
def simulate_backprop(self, unet): | |
updated_state_dict = {} | |
for k, param in unet.state_dict().items(): | |
updated_param = torch.randn_like(param) + (param * torch.randn_like(param)) | |
updated_state_dict.update({k: updated_param}) | |
unet.load_state_dict(updated_state_dict) | |
return unet | |
def test_optimization_steps_updated(self): | |
unet, ema_unet = self.get_models() | |
# Take the first (hypothetical) EMA step. | |
ema_unet.step(unet.parameters()) | |
assert ema_unet.optimization_step == 1 | |
# Take two more. | |
for _ in range(2): | |
ema_unet.step(unet.parameters()) | |
assert ema_unet.optimization_step == 3 | |
def test_shadow_params_not_updated(self): | |
unet, ema_unet = self.get_models() | |
# Since the `unet` is not being updated (i.e., backprop'd) | |
# there won't be any difference between the `params` of `unet` | |
# and `ema_unet` even if we call `ema_unet.step(unet.parameters())`. | |
ema_unet.step(unet.parameters()) | |
orig_params = list(unet.parameters()) | |
for s_param, param in zip(ema_unet.shadow_params, orig_params): | |
assert torch.allclose(s_param, param) | |
# The above holds true even if we call `ema.step()` multiple times since | |
# `unet` params are still not being updated. | |
for _ in range(4): | |
ema_unet.step(unet.parameters()) | |
for s_param, param in zip(ema_unet.shadow_params, orig_params): | |
assert torch.allclose(s_param, param) | |
def test_shadow_params_updated(self): | |
unet, ema_unet = self.get_models() | |
# Here we simulate the parameter updates for `unet`. Since there might | |
# be some parameters which are initialized to zero we take extra care to | |
# initialize their values to something non-zero before the multiplication. | |
unet_pseudo_updated_step_one = self.simulate_backprop(unet) | |
# Take the EMA step. | |
ema_unet.step(unet_pseudo_updated_step_one.parameters()) | |
# Now the EMA'd parameters won't be equal to the original model parameters. | |
orig_params = list(unet_pseudo_updated_step_one.parameters()) | |
for s_param, param in zip(ema_unet.shadow_params, orig_params): | |
assert ~torch.allclose(s_param, param) | |
# Ensure this is the case when we take multiple EMA steps. | |
for _ in range(4): | |
ema_unet.step(unet.parameters()) | |
for s_param, param in zip(ema_unet.shadow_params, orig_params): | |
assert ~torch.allclose(s_param, param) | |
def test_consecutive_shadow_params_updated(self): | |
# If we call EMA step after a backpropagation consecutively for two times, | |
# the shadow params from those two steps should be different. | |
unet, ema_unet = self.get_models() | |
# First backprop + EMA | |
unet_step_one = self.simulate_backprop(unet) | |
ema_unet.step(unet_step_one.parameters()) | |
step_one_shadow_params = ema_unet.shadow_params | |
# Second backprop + EMA | |
unet_step_two = self.simulate_backprop(unet_step_one) | |
ema_unet.step(unet_step_two.parameters()) | |
step_two_shadow_params = ema_unet.shadow_params | |
for step_one, step_two in zip(step_one_shadow_params, step_two_shadow_params): | |
assert ~torch.allclose(step_one, step_two) | |
def test_zero_decay(self): | |
# If there's no decay even if there are backprops, EMA steps | |
# won't take any effect i.e., the shadow params would remain the | |
# same. | |
unet, ema_unet = self.get_models(decay=0.0) | |
unet_step_one = self.simulate_backprop(unet) | |
ema_unet.step(unet_step_one.parameters()) | |
step_one_shadow_params = ema_unet.shadow_params | |
unet_step_two = self.simulate_backprop(unet_step_one) | |
ema_unet.step(unet_step_two.parameters()) | |
step_two_shadow_params = ema_unet.shadow_params | |
for step_one, step_two in zip(step_one_shadow_params, step_two_shadow_params): | |
assert torch.allclose(step_one, step_two) | |
def test_serialization(self): | |
unet, ema_unet = self.get_models() | |
noisy_latents, timesteps, encoder_hidden_states = self.get_dummy_inputs() | |
with tempfile.TemporaryDirectory() as tmpdir: | |
ema_unet.save_pretrained(tmpdir) | |
loaded_unet = UNet2DConditionModel.from_pretrained(tmpdir, model_cls=UNet2DConditionModel) | |
loaded_unet = loaded_unet.to(unet.device) | |
# Since no EMA step has been performed the outputs should match. | |
output = unet(noisy_latents, timesteps, encoder_hidden_states).sample | |
output_loaded = loaded_unet(noisy_latents, timesteps, encoder_hidden_states).sample | |
assert torch.allclose(output, output_loaded, atol=1e-4) | |