Spaces:
No application file
No application file
File size: 3,315 Bytes
c402081 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
# -*- coding: utf-8 -*-
"""dpm1
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1PJnjffQq5PpvzMoY1aB5uggxb35r11Ut
"""
#!pip install streamlit
#!pip install transformers
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_name = "EleutherAI/gpt-neo-1.3B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
def generate_job_posting(position, job_type, skillset, company_name, work_experience, job_location, job_benefits, field, currency, currency_format, package, communication, notice_period, qualifications, responsibility):
context = f"{company_name} is hiring a {position} for a {job_type} position in {job_location}. The ideal candidate will have at least {work_experience} years of experience in {field}, and should be proficient in {skillset}. The job responsibility includes:\n- {responsibility}\nWe offer a {package} package in currency format {currency_format}. The successful candidate will be expected to maintain excellent communication with clients and colleagues. The notice period for this role is {notice_period}, and applicants should have the following qualifications: {qualifications}."
output = generator(context, max_length=240, do_sample=True, temperature=0.7, num_return_sequences=3)
def score_output(output_text):
sentences = output_text.split('.')
avg_sentence_length = sum(len(s.strip()) for s in sentences) / len(sentences)
return 1.0 / avg_sentence_length
sorted_outputs = sorted(output, key=lambda x: score_output(x['generated_text']), reverse=True)
best_output = sorted_outputs[0]
output_text = best_output['generated_text'].replace('- job responsibility', f"\n\n- {responsibility}")
paragraphs = output_text.split('\n\n')
output_text = '\n\n'.join('\n' + p for p in paragraphs)
return output_text
st.title("Job Posting Generator")
position = st.text_input("Enter Position for Job Posting:")
job_type = st.text_input("Enter Job Type:")
skillset = st.text_input("Enter Skillset:")
company_name = st.text_input("Enter Company Name:")
work_experience = st.text_input("Enter Required Work Experience (in years):")
job_location = st.text_input("Enter job Location:")
job_benefits = st.text_input("Enter job benefits:")
field = st.text_input("Enter job field:")
currency = st.text_input("Enter Currency:")
currency_format = st.text_input("Enter Currency Format:")
package = st.text_input("Enter Package:")
communication = st.text_input("Enter Communication:")
notice_period = st.text_input("Enter Notice Period:")
qualifications = st.text_input("Enter Qualifications:")
responsibility = st.text_area("Enter Job Responsibility:")
if st.button("Generate Job Posting"):
try:
output_text = generate_job_posting(position, job_type, skillset, company_name, work_experience, job_location, job_benefits, field, currency, currency_format, package, communication, notice_period, qualifications, responsibility)
st.success(output_text)
except ValueError as e:
st.error(f"Error: {e}")
except Exception as e:
st.error(f"An error occurred: {e}") |