|
import logging |
|
import os |
|
import shutil |
|
from functools import lru_cache |
|
from typing import Optional |
|
|
|
from hbutils.system import pip_install |
|
|
|
|
|
def _ensure_onnxruntime(): |
|
try: |
|
import onnxruntime |
|
except (ImportError, ModuleNotFoundError): |
|
logging.warning('Onnx runtime not installed, preparing to install ...') |
|
if shutil.which('nvidia-smi'): |
|
logging.info('Installing onnxruntime-gpu ...') |
|
pip_install(['onnxruntime-gpu'], silent=True) |
|
else: |
|
logging.info('Installing onnxruntime (cpu) ...') |
|
pip_install(['onnxruntime'], silent=True) |
|
|
|
|
|
_ensure_onnxruntime() |
|
from onnxruntime import get_available_providers, get_all_providers, InferenceSession, SessionOptions, \ |
|
GraphOptimizationLevel |
|
|
|
alias = { |
|
'gpu': "CUDAExecutionProvider", |
|
"trt": "TensorrtExecutionProvider", |
|
} |
|
|
|
|
|
def get_onnx_provider(provider: Optional[str] = None): |
|
if not provider: |
|
if "CUDAExecutionProvider" in get_available_providers(): |
|
return "CUDAExecutionProvider" |
|
else: |
|
return "CPUExecutionProvider" |
|
elif provider.lower() in alias: |
|
return alias[provider.lower()] |
|
else: |
|
for p in get_all_providers(): |
|
if provider.lower() == p.lower() or f'{provider}ExecutionProvider'.lower() == p.lower(): |
|
return p |
|
|
|
raise ValueError(f'One of the {get_all_providers()!r} expected, ' |
|
f'but unsupported provider {provider!r} found.') |
|
|
|
|
|
@lru_cache() |
|
def _open_onnx_model(ckpt: str, provider: str = None) -> InferenceSession: |
|
options = SessionOptions() |
|
options.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL |
|
provider = provider or get_onnx_provider() |
|
if provider == "CPUExecutionProvider": |
|
options.intra_op_num_threads = os.cpu_count() |
|
|
|
logging.info(f'Model {ckpt!r} loaded with provider {provider!r}') |
|
return InferenceSession(ckpt, options, [provider]) |
|
|