Spaces:
Running
Running
File size: 14,999 Bytes
9be1e6c 01cc876 9be1e6c 0be1b9d b7a27fc 0be1b9d b7a27fc 0be1b9d b7a27fc 9be1e6c b7a27fc 9be1e6c 01cc876 9be1e6c 01cc876 9be1e6c 01cc876 9be1e6c 01cc876 9be1e6c 9dfefb7 9be1e6c 9dfefb7 9be1e6c 01cc876 9be1e6c 01cc876 9be1e6c 01cc876 9be1e6c 01cc876 9be1e6c 01cc876 9be1e6c b7a27fc 9be1e6c 0be1b9d 9dfefb7 9be1e6c 0be1b9d 9be1e6c 01cc876 9be1e6c 01cc876 9be1e6c 01cc876 9be1e6c 01cc876 9be1e6c 01cc876 9be1e6c 01cc876 9be1e6c 0be1b9d 9be1e6c 0be1b9d 9be1e6c 0be1b9d 9be1e6c 0be1b9d 9be1e6c 0be1b9d 9be1e6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
# type: ignore -- ignores linting import issues when using multiple virtual environments
import streamlit.components.v1 as components
import streamlit as st
import pandas as pd
import logging
from deeploy import Client
from constants import (
relationship_dict,
occupation_dict,
education_dict,
type_of_work_dict,
countries_dict,
marital_status_dict,
)
# reset Plotly theme after streamlit import
import plotly.io as pio
pio.templates.default = "plotly"
logging.basicConfig(level=logging.INFO)
st.set_page_config(layout="wide")
st.title("Credit-Scoring Model Explainability")
st.markdown(
"""
<style>
section[data-testid="stSidebar"] {
width: 300px !important; # Set the width to your desired value
}
</style>
""",
unsafe_allow_html=True,
)
def get_model_url():
model_url = st.text_area(
"Model URL (without the /explain endpoint, default is the demo deployment)",
"https://api.app.deeploy.ml/workspaces/708b5808-27af-461a-8ee5-80add68384c7/deployments/dc8c359d-5f61-4107-8b0f-de97ec120289/",
height=125,
)
elems = model_url.split("/")
try:
workspace_id = elems[4]
deployment_id = elems[6]
except IndexError:
workspace_id = ""
deployment_id = ""
return model_url, workspace_id, deployment_id
def ChangeButtonColour(widget_label, font_color, background_color="transparent"):
# func to change button colors
htmlstr = f"""
<script>
var elements = window.parent.document.querySelectorAll('button');
for (var i = 0; i < elements.length; ++i) {{
if (elements[i].innerText == '{widget_label}') {{
elements[i].style.color ='{font_color}';
elements[i].style.background = '{background_color}'
}}
}}
</script>
"""
components.html(f"{htmlstr}", height=0, width=0)
with st.sidebar:
st.image("deeploy_logo_wide.png", width=250)
# Ask for model URL and token
host = st.text_input("Host (Changing is optional)", "app.deeploy.ml")
model_url, workspace_id, deployment_id = get_model_url()
deployment_token = st.text_input("Deeploy Model Token", "my-secret-token")
if deployment_token == "my-secret-token":
st.warning("Please enter Deeploy API token.")
# Split model URL into workspace and deployment ID
# st.write("Values below are for debug only:")
# st.write("Workspace ID: ", workspace_id)
# st.write("Deployment ID: ", deployment_id)
client_options = {
"host": host,
"deployment_token": deployment_token,
"workspace_id": workspace_id,
}
client = Client(**client_options)
if "expander_toggle" not in st.session_state:
st.session_state.expander_toggle = True
def submit_and_clear():
try:
# Call the explain endpoint as it also includes the prediction
client.evaluate(
deployment_id, request_log_id, prediction_log_id, st.session_state.evaluation_input
)
st.toast(":green[Feedback submitted successfully.]", icon="✅")
st.session_state.eval_selected = False
st.session_state.predict_button_clicked = False
st.session_state.eval_selected = False
show_expander()
except Exception as e:
logging.error(e)
st.error(
"Failed to submit feedback."
+ "Check whether you are using the right model URL and token for evaluations. "
+ "Contact Deeploy if the problem persists."
)
st.toast(f"Failed to submit feedback: {e}")
def hide_expander():
st.session_state.expander_toggle = False
def show_expander():
st.session_state.expander_toggle = True
# Attributes
st.subheader("Loan Application")
with st.expander("Application form", expanded=st.session_state.expander_toggle):
# Split view in 2 columns
col1, col2 = st.columns(2)
with col1:
# Create input fields for attributes from constant dicts
age = st.number_input("Age", min_value=0, max_value=100, value=30)
marital_status = st.selectbox("Marital Status", marital_status_dict.keys())
marital_status_id = marital_status_dict[marital_status]
native_country = st.selectbox(
"Native Country", countries_dict.keys(), index=len(countries_dict) - 1
)
native_country_id = countries_dict[native_country]
relationship = st.selectbox("Family situation", relationship_dict.keys())
relationship_id = relationship_dict[relationship]
occupation = st.selectbox("Occupation", occupation_dict.keys(), index=1)
occupation_id = occupation_dict[occupation]
with col2:
education = st.selectbox("Highest education level", education_dict.keys(), index=4)
education_id = education_dict[education]
type_of_work = st.selectbox("Type of work", type_of_work_dict.keys())
type_of_work_id = type_of_work_dict[type_of_work]
hours_per_week = st.number_input(
"Working hours per week", min_value=0, max_value=100, value=40
)
capital_gain = st.number_input(
"Yearly income [€]", min_value=0, max_value=1000000, value=70000
)
capital_loss = st.number_input(
"Yearly expenditures [€]", min_value=0, max_value=1000000, value=60000
)
data_df = pd.DataFrame(
[
[
age,
type_of_work,
education,
marital_status,
occupation,
relationship,
capital_gain,
capital_loss,
hours_per_week,
native_country,
]
],
columns=[
"Age",
"Type of work",
"Highest education level",
"Marital Status",
"Occupation",
"Family situation",
"Yearly Income [€]",
"Yearly expenditures [€]",
"Working hours per week",
"Native Country",
],
)
data_df_t = data_df.T
request_body = {
"instances": [
[
age,
type_of_work_id,
education_id,
marital_status_id,
occupation_id,
relationship_id,
capital_gain,
capital_loss,
hours_per_week,
native_country_id,
]
]
}
if "predict_button_clicked" not in st.session_state:
st.session_state.predict_button_clicked = False
if deployment_token != "my-secret-token":
predict_button = st.button(
"Predict", key="predict_button", help="Click to get the AI prediction.", on_click=hide_expander
)
if predict_button:
st.session_state.predict_button_clicked = True
# st.session_state.selected = "Loan Decision"
with st.spinner("Loading prediction and explanation..."):
# Call the explain endpoint as it also includes the prediction
exp = client.explain(
request_body=request_body, deployment_id=deployment_id
)
st.session_state.exp = exp
if st.session_state.predict_button_clicked:
try:
exp = st.session_state.exp
# Read explanation to dataframe from json
predictions = exp["predictions"]
request_log_id = exp["requestLogId"]
prediction_log_id = exp["predictionLogIds"][0]
exp_df = pd.DataFrame(
[exp["explanations"][0]["shap_values"]], columns=exp["featureLabels"]
)
exp_df.columns = data_df.columns
exp_df_t = exp_df.T
# Merge data and explanation
exp_df_t = data_df_t.merge(exp_df_t, left_index=True, right_index=True)
weight_feat = "Weight"
exp_df_t.columns = ["Feature value", weight_feat]
exp_df_t["Feature"] = exp_df_t.index
exp_df_t = exp_df_t[["Feature", "Feature value", weight_feat]]
exp_df_t["Feature value"] = exp_df_t["Feature value"].astype(str)
# Filter values below 0.01
exp_df_t = exp_df_t[
(exp_df_t[weight_feat] > 0.01) | (exp_df_t[weight_feat] < -0.01)
]
exp_df_t[weight_feat] = exp_df_t[weight_feat].astype(float).round(2)
pos_exp_df_t = exp_df_t[exp_df_t[weight_feat] > 0]
pos_exp_df_t = pos_exp_df_t.sort_values(by=weight_feat, ascending=False)
neg_exp_df_t = exp_df_t[exp_df_t[weight_feat] < 0]
neg_exp_df_t = neg_exp_df_t.sort_values(by=weight_feat, ascending=True)
neg_exp_df_t[weight_feat] = neg_exp_df_t[weight_feat].abs()
# Get 3 features with highest positive relevance score
pos_feats = pos_exp_df_t[weight_feat].nlargest(3).index.tolist()
# For feature, get feature value and concatenate into a single string
pos_feats = [
f"{feat}: {pos_exp_df_t.loc[feat, 'Feature value']}"
for feat in pos_feats
]
# Get 3 features with highest negative relevance score
neg_feats = neg_exp_df_t[weight_feat].nlargest(3).index.tolist()
# For feature, get feature value and concatenate into a single string
neg_feats = [
f"{feat}: {neg_exp_df_t.loc[feat, 'Feature value']}"
for feat in neg_feats
]
if predictions[0]:
# Show prediction
st.subheader("Loan Decision: :green[POSITIVE]", divider="green")
# Format subheader to green
st.markdown(
"<style>.css-1v3fvcr{color: green;}</style>", unsafe_allow_html=True
)
# If prediction is positive, first show positive features, then negative features
st.success(
"**Positive creditworthiness**. This is primarily attributed to: \n - "
+ " \n- ".join(pos_feats)
)
st.warning(
"However, the following features weight ***against*** the loan application: \n - "
+ " \n- ".join(neg_feats)
+ " \n For more details, see full explanation of the credit assessment below.",
)
else:
st.subheader("Loan Decision: :red[NEGATIVE]", divider="red")
# If prediction is negative, first show negative features, then positive features
st.error(
"**Negative creditworthiness**. This is primarily attributed to: \n - "
+ " \n - ".join(neg_feats)
)
st.warning(
"However, the following factors weigh ***in favor*** of the loan applicant: \n - "
+ " \n - ".join(pos_feats)
+ " \n For more details, see full explanation of the credit assessment below.",
)
explanation_expander = st.expander("Show explanation")
with explanation_expander:
# Show explanation
col_pos, col_neg = st.columns(2)
with col_pos:
st.subheader("Factors :green[in favor] of loan approval")
# st.success("**Factors in favor of loan approval**")
st.dataframe(
pos_exp_df_t,
hide_index=True,
width=600,
column_config={
"Weight": st.column_config.ProgressColumn(
"Weight",
width="small",
format=" ",
min_value=0,
max_value=1,
)
},
)
with col_neg:
st.subheader("Factors :red[against] loan approval")
# st.error("**Factors against loan approval**")
st.dataframe(
neg_exp_df_t,
hide_index=True,
width=600,
column_config={
"Weight": st.column_config.ProgressColumn(
"Weight",
width="small",
format=" ",
min_value=0,
max_value=1,
)
},
)
st.divider()
# Add prediction evaluation
st.subheader("Evaluation: Do you agree with the predicted creditworthiness?")
st.info(
"AI model predictions always come with a certain level of uncertainty. \nEvaluate the correctness of the prediction based on your expertise and experience."
)
cols = st.columns(4)
col_yes, col_no = cols[:2]
with col_yes:
yes_button = st.button(
"Yes, I agree",
key="yes_button",
use_container_width=True,
help="Click if you agree with the prediction",
)
ChangeButtonColour("Yes, I agree", "white", "green")
with col_no:
no_button = st.button(
"No, I disagree",
key="no_button",
use_container_width=True,
help="Click if you disagree with the prediction",
type="primary",
)
ChangeButtonColour("No, I disagree", "white", "#DD360C")
# ChangeButtonColour("No, I disagree", "#DD360C", "#F0F0F0")
if "eval_selected" not in st.session_state:
st.session_state["eval_selected"] = False
if yes_button:
st.session_state.eval_selected = True
st.session_state.evaluation_input = {
"result": 0 # Agree with the prediction
}
st.session_state.placeholder = "Income is sufficient, given applicant's background"
if no_button:
st.session_state.eval_selected = True
desired_output = not predictions[0]
st.session_state.evaluation_input = {
"result": 1, # Disagree with the prediction
"value": {"predictions": [desired_output]},
}
st.session_state.placeholder = "Income is too low, given applicant's background"
if st.session_state.eval_selected:
comment = st.text_input("Would you like to add a comment?", placeholder=st.session_state.placeholder)
if comment:
st.session_state.evaluation_input["explanation"] = comment
st.button("Submit", key="submit_button", on_click=submit_and_clear)
except Exception as e:
logging.error(e)
st.error(
"Failed to retrieve the prediction or explanation."
+ "Check whether you are using the right model URL and Token. "
+ "Contact Deeploy if the problem persists."
)
|