# type: ignore -- ignores linting import issues when using multiple virtual environments import streamlit.components.v1 as components import streamlit as st import pandas as pd import logging from deeploy import Client from constants import ( relationship_dict, occupation_dict, education_dict, type_of_work_dict, countries_dict, marital_status_dict, ) # reset Plotly theme after streamlit import import plotly.io as pio pio.templates.default = "plotly" logging.basicConfig(level=logging.INFO) st.set_page_config(layout="wide") st.title("Credit-Scoring Model Explainability") st.markdown( """ """, unsafe_allow_html=True, ) def get_model_url(): model_url = st.text_area( "Model URL (without the /explain endpoint, default is the demo deployment)", "https://api.app.deeploy.ml/workspaces/708b5808-27af-461a-8ee5-80add68384c7/deployments/dc8c359d-5f61-4107-8b0f-de97ec120289/", height=125, ) elems = model_url.split("/") try: workspace_id = elems[4] deployment_id = elems[6] except IndexError: workspace_id = "" deployment_id = "" return model_url, workspace_id, deployment_id def ChangeButtonColour(widget_label, font_color, background_color="transparent"): # func to change button colors htmlstr = f""" """ components.html(f"{htmlstr}", height=0, width=0) with st.sidebar: st.image("deeploy_logo_wide.png", width=250) # Ask for model URL and token host = st.text_input("Host (Changing is optional)", "app.deeploy.ml") model_url, workspace_id, deployment_id = get_model_url() deployment_token = st.text_input("Deeploy Model Token", "my-secret-token") if deployment_token == "my-secret-token": st.warning("Please enter Deeploy API token.") # Split model URL into workspace and deployment ID # st.write("Values below are for debug only:") # st.write("Workspace ID: ", workspace_id) # st.write("Deployment ID: ", deployment_id) client_options = { "host": host, "deployment_token": deployment_token, "workspace_id": workspace_id, } client = Client(**client_options) if "expander_toggle" not in st.session_state: st.session_state.expander_toggle = True if "evaluation_submitted" not in st.session_state: st.session_state.evaluation_submitted = False def submit_and_clear(): try: # Call the explain endpoint as it also includes the prediction client.evaluate( deployment_id, request_log_id, prediction_log_id, st.session_state.evaluation_input ) st.toast(":green[Feedback submitted successfully.]", icon="✅") st.session_state.eval_selected = False st.session_state.evaluation_submitted = True st.session_state.eval_selected = False except Exception as e: logging.error(e) st.error( "Failed to submit feedback." + "Check whether you are using the right model URL and token for evaluations. " + "Contact Deeploy if the problem persists." ) st.toast(f"Failed to submit feedback: {e}") def hide_expander(): st.session_state.expander_toggle = False def show_expander(): st.session_state.expander_toggle = True # Attributes st.subheader("Loan Application") with st.expander("Application form", expanded=st.session_state.expander_toggle): # Split view in 2 columns col1, col2 = st.columns(2) with col1: # Create input fields for attributes from constant dicts age = st.number_input("Age", min_value=0, max_value=100, value=30) marital_status = st.selectbox("Marital Status", marital_status_dict.keys()) marital_status_id = marital_status_dict[marital_status] native_country = st.selectbox( "Native Country", countries_dict.keys(), index=len(countries_dict) - 1 ) native_country_id = countries_dict[native_country] relationship = st.selectbox("Family situation", relationship_dict.keys()) relationship_id = relationship_dict[relationship] occupation = st.selectbox("Occupation", occupation_dict.keys(), index=1) occupation_id = occupation_dict[occupation] with col2: education = st.selectbox("Highest education level", education_dict.keys(), index=4) education_id = education_dict[education] type_of_work = st.selectbox("Type of work", type_of_work_dict.keys()) type_of_work_id = type_of_work_dict[type_of_work] hours_per_week = st.number_input( "Working hours per week", min_value=0, max_value=100, value=40 ) capital_gain = st.number_input( "Yearly income [€]", min_value=0, max_value=1000000, value=70000 ) capital_loss = st.number_input( "Yearly expenditures [€]", min_value=0, max_value=1000000, value=60000 ) data_df = pd.DataFrame( [ [ age, type_of_work, education, marital_status, occupation, relationship, capital_gain, capital_loss, hours_per_week, native_country, ] ], columns=[ "Age", "Type of work", "Highest education level", "Marital Status", "Occupation", "Family situation", "Yearly Income [€]", "Yearly expenditures [€]", "Working hours per week", "Native Country", ], ) data_df_t = data_df.T request_body = { "instances": [ [ age, type_of_work_id, education_id, marital_status_id, occupation_id, relationship_id, capital_gain, capital_loss, hours_per_week, native_country_id, ] ] } if "predict_button_clicked" not in st.session_state: st.session_state.predict_button_clicked = False if deployment_token != "my-secret-token": predict_button = st.button( "Send loan application", key="predict_button", help="Click to get the AI prediction.", on_click=hide_expander ) if predict_button: st.session_state.predict_button_clicked = True st.session_state.evaluation_submitted = False # st.session_state.selected = "Loan Decision" with st.spinner("Loading prediction and explanation..."): # Call the explain endpoint as it also includes the prediction exp = client.explain( request_body=request_body, deployment_id=deployment_id ) st.session_state.exp = exp if st.session_state.predict_button_clicked: try: exp = st.session_state.exp # Read explanation to dataframe from json predictions = exp["predictions"] request_log_id = exp["requestLogId"] prediction_log_id = exp["predictionLogIds"][0] exp_df = pd.DataFrame( [exp["explanations"][0]["shap_values"]], columns=exp["featureLabels"] ) exp_df.columns = data_df.columns exp_df_t = exp_df.T # Merge data and explanation exp_df_t = data_df_t.merge(exp_df_t, left_index=True, right_index=True) weight_feat = "Weight" exp_df_t.columns = ["Feature value", weight_feat] exp_df_t["Feature"] = exp_df_t.index exp_df_t = exp_df_t[["Feature", "Feature value", weight_feat]] exp_df_t["Feature value"] = exp_df_t["Feature value"].astype(str) # Filter values below 0.01 exp_df_t = exp_df_t[ (exp_df_t[weight_feat] > 0.01) | (exp_df_t[weight_feat] < -0.01) ] exp_df_t[weight_feat] = exp_df_t[weight_feat].astype(float).round(2) pos_exp_df_t = exp_df_t[exp_df_t[weight_feat] > 0] pos_exp_df_t = pos_exp_df_t.sort_values(by=weight_feat, ascending=False) neg_exp_df_t = exp_df_t[exp_df_t[weight_feat] < 0] neg_exp_df_t = neg_exp_df_t.sort_values(by=weight_feat, ascending=True) neg_exp_df_t[weight_feat] = neg_exp_df_t[weight_feat].abs() # Get 3 features with highest positive relevance score pos_feats = pos_exp_df_t[weight_feat].nlargest(3).index.tolist() # For feature, get feature value and concatenate into a single string pos_feats = [ f"{feat}: {pos_exp_df_t.loc[feat, 'Feature value']}" for feat in pos_feats ] # Get 3 features with highest negative relevance score neg_feats = neg_exp_df_t[weight_feat].nlargest(3).index.tolist() # For feature, get feature value and concatenate into a single string neg_feats = [ f"{feat}: {neg_exp_df_t.loc[feat, 'Feature value']}" for feat in neg_feats ] if predictions[0]: # Show prediction st.subheader("Loan Decision: :green[POSITIVE]", divider="green") # Format subheader to green st.markdown( "", unsafe_allow_html=True ) # If prediction is positive, first show positive features, then negative features st.success( "**Positive creditworthiness**. This is primarily attributed to: \n - " + " \n- ".join(pos_feats) ) st.warning( "However, the following features weight ***against*** the loan application: \n - " + " \n- ".join(neg_feats) + " \n For more details, see full explanation of the credit assessment below.", ) else: st.subheader("Loan Decision: :red[NEGATIVE]", divider="red") # If prediction is negative, first show negative features, then positive features st.error( "**Negative creditworthiness**. This is primarily attributed to: \n - " + " \n - ".join(neg_feats) ) st.warning( "However, the following factors weigh ***in favor*** of the loan applicant: \n - " + " \n - ".join(pos_feats) + " \n For more details, see full explanation of the credit assessment below.", ) explanation_expander = st.expander("Show explanation") with explanation_expander: # Show explanation col_pos, col_neg = st.columns(2) with col_pos: st.subheader("Factors :green[in favor] of loan approval") # st.success("**Factors in favor of loan approval**") st.dataframe( pos_exp_df_t, hide_index=True, width=600, column_config={ "Weight": st.column_config.ProgressColumn( "Weight", width="small", format=" ", min_value=0, max_value=1, ) }, ) with col_neg: st.subheader("Factors :red[against] loan approval") # st.error("**Factors against loan approval**") st.dataframe( neg_exp_df_t, hide_index=True, width=600, column_config={ "Weight": st.column_config.ProgressColumn( "Weight", width="small", format=" ", min_value=0, max_value=1, ) }, ) st.divider() if not st.session_state.evaluation_submitted: # Add prediction evaluation st.subheader("Evaluation: Do you agree with the predicted creditworthiness?") st.info( "AI model predictions always come with a certain level of uncertainty. \nEvaluate the correctness of the prediction based on your expertise and experience." ) cols = st.columns(4) col_yes, col_no = cols[:2] with col_yes: yes_button = st.button( "Yes, I agree", key="yes_button", use_container_width=True, help="Click if you agree with the prediction", ) ChangeButtonColour("Yes, I agree", "white", "green") with col_no: no_button = st.button( "No, I disagree", key="no_button", use_container_width=True, help="Click if you disagree with the prediction", type="primary", ) ChangeButtonColour("No, I disagree", "white", "#DD360C") # ChangeButtonColour("No, I disagree", "#DD360C", "#F0F0F0") if "eval_selected" not in st.session_state: st.session_state["eval_selected"] = False if yes_button: st.session_state.eval_selected = True st.session_state.evaluation_input = { "result": 0 # Agree with the prediction } st.session_state.placeholder = "Income is sufficient, given applicant's background" if no_button: st.session_state.eval_selected = True desired_output = not predictions[0] st.session_state.evaluation_input = { "result": 1, # Disagree with the prediction "value": {"predictions": [desired_output]}, } st.session_state.placeholder = "Income is too low, given applicant's background" if st.session_state.eval_selected: comment = st.text_input("Would you like to add a comment?", placeholder=st.session_state.placeholder) if comment: st.session_state.evaluation_input["explanation"] = comment st.button("Submit", key="submit_button", on_click=submit_and_clear) else: st.write("Loan application already evaluated - send another loan application to evaluate again.") except Exception as e: logging.error(e) st.error( "Failed to retrieve the prediction or explanation." + "Check whether you are using the right model URL and Token. " + "Contact Deeploy if the problem persists." )