Spaces:
Sleeping
Sleeping
File size: 6,528 Bytes
3f46b34 e38052c 3f46b34 e38052c 3f46b34 e38052c c599c36 3f46b34 e38052c 3f46b34 e38052c 3f46b34 e38052c 3f46b34 e38052c 3f46b34 e38052c 3f46b34 c599c36 3f46b34 c599c36 3f46b34 c599c36 3f46b34 c599c36 3f46b34 c599c36 3f46b34 e38052c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
# type: ignore -- ignores linting import issues when using multiple virtual environments
import streamlit.components.v1 as components
import streamlit as st
import pandas as pd
import logging
from deeploy import Client
# reset Plotly theme after streamlit import
import plotly.io as pio
pio.templates.default = "plotly"
logging.basicConfig(level=logging.INFO)
st.set_page_config(layout="wide")
st.title("Your title")
def get_model_url():
"""Function to get Deeploy model URL and split it into workspace and deployment ID."""
model_url = st.text_area(
"Model URL (without the /explain endpoint, default is the demo deployment)",
"https://api.app.deeploy.ml/workspaces/708b5808-27af-461a-8ee5-80add68384c7/deployments/9155091a-0abb-45b3-8b3b-24ac33fa556b/",
height=125,
)
elems = model_url.split("/")
try:
workspace_id = elems[4]
deployment_id = elems[6]
except IndexError:
workspace_id = ""
deployment_id = ""
return model_url, workspace_id, deployment_id
def ChangeButtonColour(widget_label, font_color, background_color="transparent"):
"""Function to change the color of a button (after it is defined)."""
htmlstr = f"""
<script>
var elements = window.parent.document.querySelectorAll('button');
for (var i = 0; i < elements.length; ++i) {{
if (elements[i].innerText == '{widget_label}') {{
elements[i].style.color ='{font_color}';
elements[i].style.background = '{background_color}'
}}
}}
</script>
"""
components.html(f"{htmlstr}", height=0, width=0)
def predict_callback():
with st.spinner("Loading prediction..."):
try:
print("Request body: ", request_body)
# Call the explain endpoint as it also includes the prediction
pred = client.predict(
request_body=st.session_state.request_body, deployment_id=deployment_id
)
except Exception as e:
logging.error(e)
st.error(
"Failed to get prediction."
+ "Check whether you are using the right model URL and token for predictions. "
+ "Contact Deeploy if the problem persists."
)
return
st.session_state.pred = pred
st.session_state.evaluation_submitted = False
def submit_and_clear(evaluation: str):
if evaluation == "yes":
st.session_state.evaluation_input["result"] = 0 # Agree with the prediction
else:
# Disagree with the prediction
st.session_state.evaluation_input["result"] = 1
# In binary classification problems we can just flip the prediction
desired_output = not predictions[0]
st.session_state.evaluation_input["value"] = {"predictions": [desired_output]}
try:
# Call the explain endpoint as it also includes the prediction
client.evaluate(
deployment_id, request_log_id, prediction_log_id, st.session_state.evaluation_input
)
st.session_state.evaluation_submitted = True
st.session_state.pred = None
except Exception as e:
logging.error(e)
st.error(
"Failed to submit feedback."
+ "Check whether you are using the right model URL and token for evaluations. "
+ "Contact Deeploy if the problem persists."
)
# Define defaults for the session state
if "pred" not in st.session_state:
st.session_state.pred = None
if "evaluation_submitted" not in st.session_state:
st.session_state.evaluation_submitted = False
# Define sidebar for configuration of Deeploy connection
with st.sidebar:
st.image("deeploy_logo_wide.png", width=250)
# Ask for model URL and token
host = st.text_input("Host (Changing is optional)", "app.deeploy.ml")
model_url, workspace_id, deployment_id = get_model_url()
deployment_token = st.text_input("Deeploy API token", "my-secret-token")
if deployment_token == "my-secret-token":
st.warning("Please enter Deeploy API token.")
# In case you need to debug the workspace and deployment ID:
# st.write("Values below are for debug only:")
# st.write("Workspace ID: ", workspace_id)
# st.write("Deployment ID: ", deployment_id)
client_options = {
"host": host,
"deployment_token": deployment_token,
"workspace_id": workspace_id,
}
client = Client(**client_options)
# For debugging the session state you can uncomment the following lines:
# with st.expander("Debug session state", expanded=False):
# st.write(st.session_state)
# Input (for IRIS dataset)
# with st.expander("Input values for prediction", expanded=True):
# st.write("Please input the values for the model.")
# col1, col2 = st.columns(2)
# with col1:
# sep_len = st.number_input("Sepal length", value=1.0, step=0.1, key="Sepal length")
# sep_wid = st.number_input("Sepal width", value=1.0, step=0.1, key="Sepal width")
# with col2:
# pet_len = st.number_input("Petal length", value=1.0, step=0.1, key="Petal length")
# pet_wid = st.number_input("Petal width", value=1.0, step=0.1, key="Petal width")
request_body = {
"instances": [
[
20,
"RH",
80,
11622,
"Pave",
"missing",
"Reg",
"Lvl",
"AllPub",
"Inside",
"Gtl",
"NAmes",
"Feedr",
"Norm",
"1Fam",
"1Story",
5,
6,
1961,
1961,
"Gable",
"CompShg",
"VinylSd",
"VinylSd",
"NA",
0,
"TA",
"TA",
"CBlock",
"TA",
"TA",
"No",
"Rec",
468,
"LwQ",
144,
270,
882,
"GasA",
"TA",
"Y",
"SBrkr",
896,
0,
0,
896,
0,
0,
1,
0,
2,
1,
"TA",
5,
"Typ",
0,
"missing",
"Attchd",
1961,
"Unf",
1,
730,
"TA",
"TA",
"Y",
140,
0,
0,
0,
120,
0,
"missing",
"MnPrv",
"missing",
0,
6,
2010,
"WD",
"Normal"
]
]
}
st.session_state.request_body = request_body
# Predict and explain
predict_button = st.button("Predict", on_click=predict_callback)
if st.session_state.pred is not None:
st.write(st.session_state.pred)
|