Spaces:
Runtime error
Runtime error
File size: 2,957 Bytes
8df121c a831acd 70b2fc9 05feb2b 70b2fc9 05feb2b 617bb16 70b2fc9 0b1473d 70b2fc9 8df121c 617bb16 8df121c a831acd 617bb16 0b1473d 617bb16 05feb2b 617bb16 05feb2b 0b1473d 617bb16 0b1473d 617bb16 0b1473d 8df121c 05feb2b 8df121c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
import glob
import os
import logging
import sys
import streamlit as st
from haystack import Pipeline
from haystack.nodes import Shaper, PromptNode, PromptTemplate
from haystack.schema import Document
logging.basicConfig(
level=logging.DEBUG,
format="%(levelname)s %(asctime)s %(name)s:%(message)s",
handlers=[logging.StreamHandler(sys.stdout)],
force=True,
)
p_1 = None
p_2 = None
def get_plain_pipeline():
prompt_open_ai = PromptModel(model_name_or_path="text-davinci-003", api_key=api_key)
# Now let make one PromptNode use the default model and the other one the OpenAI model:
plain_llm_template = PromptTemplate(name="plain_llm", prompt_text="Answer the following question: $query")
node_openai = PromptNode(prompt_open_ai, default_prompt_template=plain_llm_template, max_length=300)
pipeline = Pipeline()
pipeline.add_node(component=node_openai, name="prompt_node", inputs=["Query"])
return pipeline
def get_ret_aug_pipeline():
ds = FAISSDocumentStore(faiss_index_path="my_faiss_index.faiss",
faiss_config_path="my_faiss_index.json")
retriever = EmbeddingRetriever(
document_store=ds,
embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
model_format="sentence_transformers",
top_k=2
)
shaper = Shaper(func="join_documents", inputs={"documents": "documents"}, outputs=["documents"])
default_template= PromptTemplate(
name="question-answering",
prompt_text="Given the context please answer the question. Context: $documents; Question: "
"$query; Answer:",
)
# Let's initiate the PromptNode
node = PromptNode("text-davinci-003", default_prompt_template=default_template, api_key=api_key, max_length=500)
# Let's create a pipeline with Shaper and PromptNode
pipe = Pipeline()
pipe.add_node(component=retriever, name='retriever', inputs=['Query'])
pipe.add_node(component=shaper, name="shaper", inputs=["retriever"])
pipe.add_node(component=node, name="prompt_node", inputs=["shaper"])
return pipe
def app_init():
os.environ["OPENAI_API_KEY"] = st.secrets["OPENAI_API_KEY"]
p1 = get_plain_pipeline()
p2 = get_ret_aug_pipeline()
return p1, p2
def main():
p1, p2 = app_init()
st.title("Haystack Demo")
input = st.text_input("Query ...")
query_type = st.radio("Type",
("Retrieval Augmented", "Retrieval Augmented with Sources",
"Retrieval Augmented with Web Search"))
col_1, col_2 = st.columns(2)
with col_1:
st.text("PLAIN")
answers = p1.run(input)["answers"]
for ans in answers:
st.text(ans.answer)
with col_2:
st.write(query_type.upper())
answers = p2.run(input)["answers"]
for ans in answers:
st.text(ans.answer)
if __name__ == "__main__":
main()
|