retrieval-augmentation-svb / backend_utils.py
notSoNLPnerd's picture
made changes
c24940a
raw
history blame
4.28 kB
import streamlit as st
from haystack import Pipeline
from haystack.document_stores import FAISSDocumentStore
from haystack.nodes import Shaper, PromptNode, PromptTemplate, PromptModel, EmbeddingRetriever
from haystack.nodes.retriever.web import WebRetriever
QUERIES = [
"Did SVB collapse?",
"Why did SVB collapse?",
"What does SVB failure mean for our economy?",
"Who is responsible for SVC collapse?",
"When did SVB collapse?"
]
@st.cache_resource(show_spinner=False)
def get_plain_pipeline():
prompt_open_ai = PromptModel(model_name_or_path="text-davinci-003", api_key=st.secrets["OPENAI_API_KEY"])
# Now let make one PromptNode use the default model and the other one the OpenAI model:
plain_llm_template = PromptTemplate(name="plain_llm", prompt_text="Answer the following question: $query")
node_openai = PromptNode(prompt_open_ai, default_prompt_template=plain_llm_template, max_length=300)
pipeline = Pipeline()
pipeline.add_node(component=node_openai, name="prompt_node", inputs=["Query"])
return pipeline
@st.cache_resource(show_spinner=False)
def get_retrieval_augmented_pipeline():
ds = FAISSDocumentStore(faiss_index_path="data/my_faiss_index.faiss",
faiss_config_path="data/my_faiss_index.json")
retriever = EmbeddingRetriever(
document_store=ds,
embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
model_format="sentence_transformers",
top_k=2
)
shaper = Shaper(func="join_documents", inputs={"documents": "documents"}, outputs=["documents"])
default_template = PromptTemplate(
name="question-answering",
prompt_text="Given the context please answer the question. Context: $documents; Question: "
"$query; Answer:",
)
# Let's initiate the PromptNode
node = PromptNode("text-davinci-003", default_prompt_template=default_template,
api_key=st.secrets["OPENAI_API_KEY"], max_length=500)
# Let's create a pipeline with Shaper and PromptNode
pipeline = Pipeline()
pipeline.add_node(component=retriever, name='retriever', inputs=['Query'])
pipeline.add_node(component=shaper, name="shaper", inputs=["retriever"])
pipeline.add_node(component=node, name="prompt_node", inputs=["shaper"])
return pipeline
@st.cache_resource(show_spinner=False)
def get_web_retrieval_augmented_pipeline():
search_key = st.secrets["WEBRET_API_KEY"]
web_retriever = WebRetriever(api_key=search_key, search_engine_provider="SerperDev")
shaper = Shaper(func="join_documents", inputs={"documents": "documents"}, outputs=["documents"])
default_template = PromptTemplate(
name="question-answering",
prompt_text="Given the context please answer the question. Context: $documents; Question: "
"$query; Answer:",
)
# Let's initiate the PromptNode
node = PromptNode("text-davinci-003", default_prompt_template=default_template,
api_key=st.secrets["OPENAI_API_KEY"], max_length=500)
# Let's create a pipeline with Shaper and PromptNode
pipeline = Pipeline()
pipeline.add_node(component=web_retriever, name='retriever', inputs=['Query'])
pipeline.add_node(component=shaper, name="shaper", inputs=["retriever"])
pipeline.add_node(component=node, name="prompt_node", inputs=["shaper"])
return pipeline
# @st.cache_resource(show_spinner=False)
# def app_init():
# print("Loading Pipelines...")
# p1 = get_plain_pipeline()
# print("Loaded Plain Pipeline")
# p2 = get_retrieval_augmented_pipeline()
# print("Loaded Retrieval Augmented Pipeline")
# p3 = get_web_retrieval_augmented_pipeline()
# print("Loaded Web Retrieval Augmented Pipeline")
# return p1, p2, p3
if 'query' not in st.session_state:
st.session_state['query'] = ""
def set_question():
st.session_state['query'] = st.session_state['q_drop_down']
def set_q1():
st.session_state['query'] = QUERIES[0]
def set_q2():
st.session_state['query'] = QUERIES[1]
def set_q3():
st.session_state['query'] = QUERIES[2]
def set_q4():
st.session_state['query'] = QUERIES[3]
def set_q5():
st.session_state['query'] = QUERIES[4]