Spaces:
Runtime error
Runtime error
update to haystack 1.17.1: simplify pipelines, remove shaper
Browse files- app.py +2 -1
- requirements.txt +1 -1
- utils/backend.py +10 -13
app.py
CHANGED
@@ -47,8 +47,9 @@ if st.session_state.get('query') and run_pressed:
|
|
47 |
'\n This may take a few mins and might also fail if OpenAI API server is down.'):
|
48 |
answers_2 = p3.run(ip)
|
49 |
placeholder_retrieval_augmented.markdown(answers_2['results'][0])
|
|
|
50 |
with st.expander("See source:"):
|
51 |
-
src = answers_2['invocation_context']['documents'][0].replace("$", "\$")
|
52 |
split_marker = "\n\n" if "\n\n" in src else "\n"
|
53 |
src = " ".join(src.split(split_marker))[0:2000] + "..."
|
54 |
st.write(src)
|
|
|
47 |
'\n This may take a few mins and might also fail if OpenAI API server is down.'):
|
48 |
answers_2 = p3.run(ip)
|
49 |
placeholder_retrieval_augmented.markdown(answers_2['results'][0])
|
50 |
+
print(answers_2)
|
51 |
with st.expander("See source:"):
|
52 |
+
src = answers_2['invocation_context']['documents'][0].content.replace("$", "\$")
|
53 |
split_marker = "\n\n" if "\n\n" in src else "\n"
|
54 |
src = " ".join(src.split(split_marker))[0:2000] + "..."
|
55 |
st.write(src)
|
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
|
2 |
faiss-cpu==1.7.2
|
3 |
sqlalchemy>=1.4.2,<2
|
4 |
sqlalchemy_utils
|
|
|
1 |
+
farm-haystack==1.17.1
|
2 |
faiss-cpu==1.7.2
|
3 |
sqlalchemy>=1.4.2,<2
|
4 |
sqlalchemy_utils
|
utils/backend.py
CHANGED
@@ -9,7 +9,7 @@ from haystack.nodes.retriever.web import WebRetriever
|
|
9 |
def get_plain_pipeline():
|
10 |
prompt_open_ai = PromptModel(model_name_or_path="text-davinci-003", api_key=st.secrets["OPENAI_API_KEY"])
|
11 |
# Now let make one PromptNode use the default model and the other one the OpenAI model:
|
12 |
-
plain_llm_template = PromptTemplate(name="plain_llm", prompt_text="Answer the following question:
|
13 |
node_openai = PromptNode(prompt_open_ai, default_prompt_template=plain_llm_template, max_length=300)
|
14 |
pipeline = Pipeline()
|
15 |
pipeline.add_node(component=node_openai, name="prompt_node", inputs=["Query"])
|
@@ -27,22 +27,21 @@ def get_retrieval_augmented_pipeline():
|
|
27 |
model_format="sentence_transformers",
|
28 |
top_k=2
|
29 |
)
|
30 |
-
shaper = Shaper(func="join_documents", inputs={"documents": "documents"}, outputs=["documents"])
|
31 |
|
32 |
default_template = PromptTemplate(
|
33 |
name="question-answering",
|
34 |
-
prompt_text="Given the context please answer the question. Context:
|
35 |
-
"
|
36 |
)
|
|
|
37 |
# Let's initiate the PromptNode
|
38 |
node = PromptNode("text-davinci-003", default_prompt_template=default_template,
|
39 |
api_key=st.secrets["OPENAI_API_KEY"], max_length=500)
|
40 |
|
41 |
-
# Let's create a pipeline with
|
42 |
pipeline = Pipeline()
|
43 |
pipeline.add_node(component=retriever, name='retriever', inputs=['Query'])
|
44 |
-
pipeline.add_node(component=
|
45 |
-
pipeline.add_node(component=node, name="prompt_node", inputs=["shaper"])
|
46 |
return pipeline
|
47 |
|
48 |
|
@@ -50,18 +49,16 @@ def get_retrieval_augmented_pipeline():
|
|
50 |
def get_web_retrieval_augmented_pipeline():
|
51 |
search_key = st.secrets["WEBRET_API_KEY"]
|
52 |
web_retriever = WebRetriever(api_key=search_key, search_engine_provider="SerperDev")
|
53 |
-
shaper = Shaper(func="join_documents", inputs={"documents": "documents"}, outputs=["documents"])
|
54 |
default_template = PromptTemplate(
|
55 |
name="question-answering",
|
56 |
-
prompt_text="Given the context please answer the question. Context:
|
57 |
-
"
|
58 |
)
|
59 |
# Let's initiate the PromptNode
|
60 |
node = PromptNode("text-davinci-003", default_prompt_template=default_template,
|
61 |
api_key=st.secrets["OPENAI_API_KEY"], max_length=500)
|
62 |
-
# Let's create a pipeline with
|
63 |
pipeline = Pipeline()
|
64 |
pipeline.add_node(component=web_retriever, name='retriever', inputs=['Query'])
|
65 |
-
pipeline.add_node(component=
|
66 |
-
pipeline.add_node(component=node, name="prompt_node", inputs=["shaper"])
|
67 |
return pipeline
|
|
|
9 |
def get_plain_pipeline():
|
10 |
prompt_open_ai = PromptModel(model_name_or_path="text-davinci-003", api_key=st.secrets["OPENAI_API_KEY"])
|
11 |
# Now let make one PromptNode use the default model and the other one the OpenAI model:
|
12 |
+
plain_llm_template = PromptTemplate(name="plain_llm", prompt_text="Answer the following question: {query}")
|
13 |
node_openai = PromptNode(prompt_open_ai, default_prompt_template=plain_llm_template, max_length=300)
|
14 |
pipeline = Pipeline()
|
15 |
pipeline.add_node(component=node_openai, name="prompt_node", inputs=["Query"])
|
|
|
27 |
model_format="sentence_transformers",
|
28 |
top_k=2
|
29 |
)
|
|
|
30 |
|
31 |
default_template = PromptTemplate(
|
32 |
name="question-answering",
|
33 |
+
prompt_text="Given the context please answer the question. Context: {join(documents)}; Question: "
|
34 |
+
"{query}; Answer:",
|
35 |
)
|
36 |
+
print(default_template.prompt_text)
|
37 |
# Let's initiate the PromptNode
|
38 |
node = PromptNode("text-davinci-003", default_prompt_template=default_template,
|
39 |
api_key=st.secrets["OPENAI_API_KEY"], max_length=500)
|
40 |
|
41 |
+
# Let's create a simple retrieval augmented pipeline with the retriever + PromptNode
|
42 |
pipeline = Pipeline()
|
43 |
pipeline.add_node(component=retriever, name='retriever', inputs=['Query'])
|
44 |
+
pipeline.add_node(component=node, name="prompt_node", inputs=["retriever"])
|
|
|
45 |
return pipeline
|
46 |
|
47 |
|
|
|
49 |
def get_web_retrieval_augmented_pipeline():
|
50 |
search_key = st.secrets["WEBRET_API_KEY"]
|
51 |
web_retriever = WebRetriever(api_key=search_key, search_engine_provider="SerperDev")
|
|
|
52 |
default_template = PromptTemplate(
|
53 |
name="question-answering",
|
54 |
+
prompt_text="Given the context please answer the question. Context: {join(documents)}; Question: "
|
55 |
+
"{query}; Answer:",
|
56 |
)
|
57 |
# Let's initiate the PromptNode
|
58 |
node = PromptNode("text-davinci-003", default_prompt_template=default_template,
|
59 |
api_key=st.secrets["OPENAI_API_KEY"], max_length=500)
|
60 |
+
# Let's create a pipeline with the webretriever + PromptNode
|
61 |
pipeline = Pipeline()
|
62 |
pipeline.add_node(component=web_retriever, name='retriever', inputs=['Query'])
|
63 |
+
pipeline.add_node(component=node, name="prompt_node", inputs=["retriever"])
|
|
|
64 |
return pipeline
|